ПЕДАГОГИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ ВЫСОКИХ ИНТЕЛЛЕКТУАЛЬНЫХ ТЕХНОЛОГИЙ ОБРАЗОВАНИЯ И НАУКИ

ПОСТРОЕНИЕ МЕЖПРЕДМЕТНОГО ИНФОРМАЦИОННОГО ЦИКЛА ФУНДМЕНТАЛЬНОЙ ЕСТЕСТВЕННОНАУЧНОЙ ДИСЦИПЛИНЫ В ТЕХНИЧЕСКОМ ВУЗЕ

Л.В. Медведева, доктор педагогических наук, профессор. Санкт-Петербургский университет ГПС МЧС России

Рассмотрены психолого-педагогические условия и принципы построения межпредметного информационного цикла для обеспечения интеграции естественнонаучного и специального образования высшей школы посредством адекватного использования информационного ресурса.

Ключевые слова: межпредметный информационный цикл, информационная единица, профессионально-ориентированное задание, структурно-функциональные связи, развивающее пространство

BUILDING A CROSS-CURRICULUM INFORMATION LOOP FUNDAMENTAL OF THE NATURAL SCIENCES IN TECHNICAL COLLEGES

L.V. Medvedeva. Saint-Petersburg university of State fire service of EMERCOM of Russia

Considered psychological and pedagogical conditions and principles of building a cross-curriculum information loop to achieve integration of natural sciences and the special education the higher school through the appropriate use of information resource.

Keywords: cross-curriculum information loop, information item, professionally-oriented task, structural and functional relationships, to develop space

Информационная обучающая база естественнонаучной дисциплины (ЕНД) обеспечивает программными продуктами учебные и самостоятельные занятия и предоставляет для всех участников педагогического процесса свободный доступ к информации в учебное и неучебное время учебно-воспитательного процесса. Информационная база ЕНД формируется как открытая развивающаяся система, подсистемами которой являются:

- специализированные пакеты профессионально-ориентированных заданий;
- антропоцентрическая, интеллектуальная система обучения.

Информационной единицей специализированного компьютерного пакета становится профессионально-ориентированное задание — программный продукт, разработанный в адекватной информационной среде в контексте собственного технического задания. Информационные единицы представляются в собственных рабочих книгах, которые систематизируются в специализированных компьютерных пакетах и хранятся в электронном варианте.

Информационная система (ИС) профессионально направленного обучения ЕНД не имеет блока объяснения, а база знаний обучающегося выведена из структуры «искусственного интеллекта». Психологической основой методики овладения алгоритмами

практических расчетов является опора на предметность восприятия учебного материала при формировании ассоциативных связей.

Целью построения межпредметного информационного цикла (МИЦ) является обеспечение ускоряющего темпа развития интеграции естественнонаучного и специального образования высшей школы посредством адекватного использования информационного ресурса.

Ведущими регулятивами конструирования МИЦ становятся:

- конструирование на основе принципа укрупнения целостной системы практических занятий (формирование целостного «образа» базовой информационной единицы МИЦ);
 - опора на предметность восприятия учебного материала;
- реализация организующих планов деятельности субъектов педагогического процесса в антропоцентрической, интеллектуальной системе обучения;
- использование в учебное и неучебное время единой информационной обучающей базы. *Дидактическими условиями* эффективного функционирования целостной системы практических занятий, сконструированной на основе принципа укрупнения, становятся:
- система учебных профессионально-ориентированных заданий, которая функционирует на практических и самостоятельных занятиях, в процессе курсового и дипломного проектирования;
- осуществление пропедевтического этапа в применении системы профессиональноориентированных заданий, целью которого является привитие культуры решения профессиональных проблем, формирование ориентировочной основы действий в профессионально-подобных ситуациях с помощью алгоритмов убывающей жесткости;
- предъявление усложняющейся последовательности профессионально-ориентированных заданий как общего направления профессионально направленного обучения. При этом в рамках отдельно взятого занятия осуществляется развертывание «цепочки» профессионально-ориентированных заданий, объединенных центральной, ориентирующей на конечный результат усвоения базовой информационной единицы МИЦ;
 - нелинейные схемы учебных занятий.

На первом этапе конструирования МИЦ (методолого-концептуальный аспект) обосновывается целевая функция МИЦ для каждой специальности; согласовываются «опорные пункты» межпредметных взаимодействий, конкретизируется межпредметная «область определения» базового практического расчета — системного компонента будущего дипломного проекта (в единстве содержательной и процессуальной сторон), выделяется инвариантное ядро практического расчета.

На втором этапе конструирования МИЦ (деятельностный аспект) алгоритмы практических расчетов «заключаются» в «черный ящик»; организуется специальная работа на «входе» и «выходе» алгоритма; разрабатывается организующий план действий обучающихся при движении от «входа» к «выходу» алгоритма; структурируется учебная деятельность обучающихся при изучении содержания «черного ящика». На «входе» в алгоритм практического расчета актуализируется процедура объективации явлений и процессов, исследуемых при решении профессионально-ориентированных задач.

Организующий план действий обучающегося — это план последовательного преодоления цепи смоделированных проблемных «тупиковых» ситуаций, обеспечивающий гибкость структурно-функциональных связей между «входом» и «выходом» алгоритма практического расчета. На «выходе» из алгоритма основными направлениями деятельности преподавателя становятся: совместное изучение содержания «черного ящика» на базе системного анализа результатов практических расчетов, формирование специальных умений в процессе рефлексивного овладения оценочными действиями. На уровне видов учебной деятельности обучающихся актуализируются: работа с вариативными алгоритмами, решение сюжетных (рефлективных) задач, овладение математическим аппаратом практических расчетов, интенсивные самостоятельные занятия.

На третьем этапе конструирования МИЦ (дидактический аспект) осуществляется построение и «стыковка» двух дидактических схем обучения с целью формирования

«развивающего» пространства в учебном и неучебном времени, в котором обучающиеся непрерывно побуждаются к личной активности (познавательной и социальной), что способствует непрерывному развитию индивидуального ментального опыта в учебнопознавательном процессе. Первая дидактическая схема обеспечивает закрепление и «хранение» в памяти обучающихся системы генерализированных элементов знаний вариативных практических расчетов, представленных в знако-символьной форме. Вторая дидактическая схема интегрирует три этапа обучения:

- репродуктивно-ознакомительный этап (введение в познавательное поле проблемы);
- этап формирования обобщенных умений выполнения практических расчетов;
- этап творчества (самопрограммирование на решение проблемы и инициативное развитие познавательного поля).

Четвертый этап — это этап согласованного взаимообусловленного действия двух дидактических схем, который может быть назван этапом обобщения и решения сюжетных (рефлективных) задач. На этом этапе происходит конкретизация и «материализация» структурных связей между элементами профессионального знания вариативных алгоритмов практического расчета. При этом важную роль играет степень согласованности двух дидактических схем: первой, *стержневой*, обеспечивающей формирование адекватного воспроизведения понятийной структуры практического расчета и второй, *интегральной*, включающей в себя выделенные три этапа.

На четвертом этапе происходит «стыковка» этих схем: с одной стороны, обучающиеся достаточно свободно владеют системами понятий и формулами в знакосимвольной форме, а с другой — обучающиеся имеют конкретные результаты решения практических задач, полученных в самостоятельном эвристическом поиске. Качество «стыковки» двух дидактических схем оценивается по умению обучающихся анализировать полученные результаты с помощью приемов дедуктивно-индуктивного мышления и производить обобщенные выводы при защите индивидуальных заданий (на практическом занятии или в часы консультаций преподавателя).

Системный анализ содержания выделенных этапов позволяет сделать вывод, что при практической реализации первой и второй дидактических схем в процессе обучения между учебным и неучебным пространством устанавливаются не формальные, а конструктивные связи, что в итоге обеспечивает «качество» стыковки дидактических схем на четвертом этапе. При этом результаты всех этапов обучения являются взаимосвязанными, взаимообусловленными: качество работы педагога и обучающегося на каждом предыдущем этапе определяет эффективность и результативность последующего. В условиях взаимосвязи и взаимообусловленности результатов выделенных этапов обучения осуществляется построение единого «развивающего» пространства, в котором процесс формирования фонда профессиональных знаний, общих умений и навыков выполнения практических расчетов становится непрерывным.

Представляется, что построение двух дидактических схем позволяет, с одной стороны, реализовать потенциал укрупненного введения новых знаний и обеспечить выполнение дидактических условий прочного усвоения и рефлексивного освоения инвариантного ядра базового практического расчета, а с другой — создать психолого-педагогические условия естественного перехода от учения к труду в процессе обучения фундаментальной дисциплине. В «развивающем пространстве» фундаментальной дисциплины обучающиеся рефлексивно овладевают целостным «образом» базовой информационной единицы МИЦ, приобретают специальные и общие умения (нормативный и вариативный компоненты) при естественном переходе от учения к труду в учебное и неучебное время.

Учебно-познавательную деятельность (УД) обучающихся в процессе формирования целостного постаналитического «образа» базовой информационной единицей МИЦ следует рассматривать как форму познания содержания профессионального знания, включенного в теоретическую базу подготовки специалиста в единстве с действиями, которые она предполагает. Осуществление видов учебно-познавательной деятельности в процессе обучения позволяет:

- сформировать и развить у обучающихся способности аккумулировать и систематизировать информационные потоки;
 - сформировать умение генерализировать знания, навыки и умения;
- сформировать потребность в самообразовании и самореализации на индивидуальной образовательной траектории;
- обеспечить развитие высших психических процессов (восприятие, внимание, память, эмоции, мышление, речь) на основе кибернетического подхода в педагогике;
- осуществить рефлексивное самоопределение в информационных системах обучения и рефлексивное самосознание собственных информационных потребностей.

Таким образом, происходит формирование и развитие компонентов системы инвариантных, интеллектуальных умений. В этих условиях обучающийся переходит от учебной к квазипрофессиональной деятельности (КПД), то есть приступает к решению реальных проблем, которые требуют от него компетентных действий в профессионально-подобных ситуациях. «Погружение» в реальные проблемы и изучение объекта исследования в развитии приводят обучающегося к необходимости формулирования новой проблемы, которая неизбежно требует «добывания» новой недостающей информации, реализации межпредметных связей и инновационных подходов к решению реальной проблемы. Таким образом, осуществляется метапереход к инновационной деятельности.

Инновационную деятельность обучающихся следует рассматривать как форму познания действительности, направленную на создание принципиально новых знаний, необходимых для решения научных и технико-технологических проблем [1–3]. Осуществление инновационной деятельности в процессе обучения позволяет:

- развивать рассудочное (левое полушарие) и интуитивное (правое полушарие)
 мышление;
- развивать сознание и сверхсознание с использованием материала, накопленного в подсознании (левое и правое полушария);
 - формировать алгоритмичность и эвристичность мышления;
- сформировать организующий план действий альтернативный традиционной схеме «задача-решение»: «задача» «проблема» признание лабиринта возможностей выбор и обоснование оптимального решения (рефлексия) развитие исходной проблемы формулировка и постановка новой задачи.

Самостоятельная реализация межпредметных связей выводит обучающихся на новый уровень познания, когда исследуется состояние объекта изучения с учетом многообразия его связей. Выявление новых связей объекта осуществляется последовательно, и исследование многообразия связей объекта изучения приобретает рекурсивный характер. Нелинейные взаимодействия с образовательной средой специальных дисциплин могут способствовать активному включению обучающихся в новаторскую деятельность, научно-исследовательскую работу и т.д. Таким образом, развитие инновационной деятельности обуславливает переход к учебно-профессиональной (УПД) и научной деятельности.

Научная деятельность обучающихся — это форма учебно-профессиональной деятельности, которая базируется на интеграции учебной, научно-исследовательской, опытно-конструкторской и производственной деятельности в образовательной среде вуза. Научную деятельность обучающихся следует рассматривать как одно из необходимых условий развития интеллектуального и творческого потенциала будущего специалиста.

Шукшунов В.Е. отмечает: «Обучение студентов должно находиться в органическом единстве с их активной научно-исследовательской, конструкторской и производственной деятельностью» [4, с. 28]. Вице-президент АН СССР Ю.А. Осипьян, по существу развивая мысль профессора В.Е. Шукшунова, также указывает на исключительное значение, которое имеет для профессионального становления будущего специалиста, его вовлечение в научную деятельность: «Это очень существенно в высшей школе, когда профессиональные знания ученые могут передать тут же, как говорится, не отходя от станка, потому что молодежи нужно не только передавать сами знания, но и научить ее видеть то, как эти знания

добываются, а это можно сделать, только привлекая молодежь к самому процессу получения знаний ... Студент должен не играть в науку, а делать дело, хотя бы небольшую часть, но общего серьезного дела, которым занят его родной вуз. С первых дней появления студента в вузе нужно стараться привлечь его к научной деятельности» [4, с. 36].

Таким образом, осуществление научной деятельности в процессе обучения позволяет:

- решать конкретные научные и технико-технологические проблемы в атмосфере сотворчества с преподавателями;
- понимать, что учебный предмет, отражая основы науки, не повторяет полностью ее содержание, а значит, наука и соответствующий ей учебный предмет имеют различную структуру;
- понимать, что наука это рефлексирующая система, которая способна переключаться на новые механизмы управления и функционирования на основе, выявленной в результате рефлексии феноменологии ее деятельности, способна прогнозировать свое будущее;
- воспитывать нравственные позиции в представлениях о путях и средствах удовлетворения своих потребностей не за счет других, а за счет осознанной мобилизации своего «Я» (правое полушарие) на удовлетворение потребностей всех тех, кого левое полушарие мозга относит к «Мы».

Представленная схема переходов от одной формы деятельности к другой в процессе построения МИЦ, дает основания сделать вывод, что в результате построения единого «развивающего пространства» в учебно-воспитательном процессе фундаментальной дисциплины обеспечивается формирование и овладение целостным «образом» базовой информационной единицей МИЦ при естественном переходе от учения к труду. При этом создаются условия для заключения не формального «долгосрочного контракта» сотрудничества фундаментальной дисциплины и специальными дисциплинами вуза в процессе профессиональной подготовки современного специалиста для рынка труда.

Выводы по содержанию трех этапов конструирования МИЦ

Системный анализ содержания трех этапов конструирования МИЦ в процессе профессионально направленного обучения фундаментальной дисциплине позволяет сформулировать и выделить ведущие регулятивы ее конструирования:

- конструирование на основе принципа укрупнения целостной системы практических занятий, которая обеспечивает прочное усвоение и рефлексивное освоение инвариантного ядра системного научного знания в процессе формирования целостного «образа» базовой информационной единицы МИЦ;
- использование опоры на предметность восприятия учебного материала при формировании фонда знаний, общих и специальных, интеллектуальных умений практического использования базовой информационной единицы МИЦ;
- реализация организующих планов деятельности субъектов педагогического процесса в антропоцентрической, интеллектуальной системе обучения;
 - использование в учебное и неучебное время единой информационной обучающей базы.

Соблюдение ведущих регулятивов при конструировании и построении МИЦ обусловливает реальность педагогических прогнозов. процессе интеграции В естественнонаучного И специального образования В педагогическом поле вуза обеспечивается непрерывность фундаментализации спениального образования непрерывное развитие ментального опыта будущих специалистов. При последовательно оформляется комплексно-стержневая область системного научного знания, которая оказывает значительное влияние на единство содержательной и процессуальной сторон педагогического процесса высшей школы, ориентируя его на объективную модель подготовки современного специалиста.

Литература

- 1. Вербицкий А.А., Еременко Г.А., Цеханский В.М. Проблемно-контекстное моделирование творческой деятельности в учебном процессе вуза // Науч.-метод. основы проблемного обучения. Ростов н/Д.1988.
- 2. Грановская Р.М., Крижанская Ю.С. Творчество и преодоление стереотипов. СПб.: OMS, 1994.
- 3. Гуманистические основы технологий обучения взрослых в различных образовательных системах: материалы конф. СПб.: ИОВ РАО, 1999.
- 4. Высшее техническое образование: взгляд на перестройку / под ред. В.Е. Шукшунова. М.: Высш. шк., 1990.

ТЕХНОЛОГИИ ОБРАЗОВАНИЯ В ГУМАНИТАРНОМ ЗНАНИИ

А.А. Луговой, доктор философских наук, профессор.

Санкт-Петербургский университет ГПС МЧС России.

О.А. Луговая, кандидат философских наук, доцент. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Рассмотрены неклассические формы проведения практических занятий гуманитарного профиля. В частности, особое внимание уделено технологии «педагогическая мастерская». Показана ее эффективность и необходимость использования в учебном процессе.

Ключевые слова: интерактивные формы, активные формы, педагогические технологии

INTERACTIVE FORMS OF TRAINING IN THE HUMANITIES

- A.A. Lugovoy. Saint-Petersburg university of State fire service of EMERCOM of Russia.
- O.A. Lugovaya. Saint-Petersburg of state university electrotehnic

Considered non-classical forms of practical training fields. In particular, special attention is paid to the «workshop» teaching technology. Shows its effectiveness and the need to use in the educational process. *Keywords*: interactive forms, active forms, educational technology

Современная ситуация в вузах, наряду с классическими формами проведения занятий, требует альтернативных форм. Одной из альтернативных форм выступает педагогическая мастерская [1, 2]. Причем успех этой технологии может обеспечиваться проведением как всех этапов приемов мастерской, так и отдельных ее элементов. Творческий подход преподавателя начинается уже в выборе необходимых элементов мастерской.

Педагогическая мастерская — это технологичная рефлексивная форма личностнодеятельной организации учебного процесса. Строится она таким образом, что позволяет познавать не только окружающий мир в преподаваемом предмете, но и себя как личность, других людей. Мастерская включает в себя механизмы исследовательской работы, художественного и технического творчества, игры, вербального и невербального общения, индивидуальной работы, социализации, психологических тренингов и рефлексии. Мастерская, выступая синтетическим, многомерным педагогическим явлением, дает возможность совместной диалоговой деятельности преподавателя и студента. Это могут быть как интеллектуальный, так и эмоциональный, этический, коммуникативный, психологический аспекты этой деятельности.

Использование такой формы проведения практических занятий особенно актуально при неподготовленной аудитории или малом количестве аудиторных часов. В первом случае преподавателю необходимо иметь раздаточный материал, во втором — учащиеся