ФИЗИКО-МАТЕМАТИЧЕСКИЕ АСПЕКТЫ ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

ДАТЧИКИ ДЛЯ КОНТРОЛЯ УРОВНЯ И РАСХОДА ЖИДКОСТИ С ИСПОЛЬЗОВАНИЕМ ТЕРМОРЕЗИСТОРОВ

В.А. Кораблёв, кандидат технических наук, старший научный сотрудник;

А.В. Шарков, доктор технических наук, профессор.

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики.

Д.А. Минкин, кандидат технических наук, доцент.

Санкт-Петербургский университет ГПС МЧС России.

И.И. Гончар, кандидат технических наук, старший научный сотрудник;

П.Ю. Тихомиров, кандидат технических наук.

ОАО «Авангард», Санкт-Петербург

Предложен метод измерения уровня с помощью терморезисторных сенсоров, разработана экспериментальная установка, имитирующая прохождение границы жидкость-газ.

Ключевые слова: терморезистор, сенсор, датчик уровня, расходомер

SENSORS FOR MEASURING LIQUID LEVEL AND RATE-OF-FLOW WITH HELP OF THERMORESISTORS

V.A. Korablev: A.V. Sharkov.

Saint-Petersburg national research university of information technologies, mechanics and optics.

D.A. Minkin. Saint-Petersburg university of State fire service of EMERCOM of Russia.

I.I. Gonchar; P.Yu. Tikhomirov. OJSC «Avangard», Saint-Petersburg

Method of measuring liquid level with help of thermo resistors is suggested, experimental setup modeling of liquid-gas line crossing is suggested.

Keywords: thermo resistor, sensor, level gauge, rate-of-flow indicator

Пожар на борту летательных аппаратов является одной из основных причин их крушения, а также большого числа жертв при возгорании топлива после приземления (аварийной посадки, падения). Авиационные топлива самовоспламеняются уже при температуре 230–240 °C и имеют высокую температуру горения (порядка 1100 °C). В таких условиях живучесть элементов конструкции составляет единицы минут, а тушение осложняется тем, что прямой доступ человека в зону пожара во многих случаях невозможен.

Исходя из этого, контроль температуры топлива, уменьшение количества излишек топлива при заправке и невыработанных остатков топлива при окончании эксплуатации являются актуальными задачами для повышения пожарной безопасности летательных аппаратов и ракетой техники.

Решение этих задач невозможно без датчиков контроля температуры, уровня и расхода.

В настоящей работе предложен метод измерения уровней криогенных жидкостей с использованием малоинерционных пленочных терморезисторных сенсоров. Основу их конструкции представляет подложка из тонкого теплоизоляционного материала. Толщина подложки составляет 40–50 мкм. На подложке изготовлен методами микроэлектроники терморезистор, расположенный на площади приблизительно $0,2\times0,2$ мм. В качестве примера на рис. 1 приведен чертеж одного из сенсоров.



Рис. 1. Топологический чертеж сенсора с одним терморезистором

На терморезистор подается постоянное напряжение. В зависимости от интенсивности теплоотдачи в среду изменяются его температура и электрическое сопротивление. По изменению электрического сопротивления можно определить границу перехода жидкость-газ или газ-жидкость. Тонкая теплоизоляционная подложка, миниатюрные габариты конструкции сенсора позволяют определять границу перехода газ-жидкость в контрольной точке с высокой точностью. Погрешность измерения уровня жидкости в контрольной точке определяется временем задержки срабатывания (переходного процесса) сенсора при прохождении им зеркала жидкости.

Схема подключения терморезисторного сенсора для измерения уровня приведена на рис. 2. Резистор R2 — терморезистор сенсора. Резисторы R1, R3 и R4 установлены на печатной плате сенсора.

Рис. 2. Схема подключения терморезисторного сенсора: A – амперметр; R1 – балансировочный резистор (диапазон: от 20 до 200 Ом); R2 –терморезистор; R3 – резистор 240 Ом \pm 1%; R4 – резистор 320 Ом \pm 1%

Перед началом измерений на балансировочном резисторе R1 выставляется сопротивление 50 ± 5 Ом. Величина сопротивления контролируется универсальным вольтметром B7-40/4. На источнике питания E5-45 выставляется напряжение, при котором сила тока, измеряемая амперметром, равна 8 ± 0.2 мА.

Для оценки точности измерения уровня с помощью терморезисторных сенсоров была подготовлена экспериментальная установка. Ее основу представляет собой сосуд с криогенной жидкостью (азот) (рис. 3), в котором погружается в жидкость или поднимается из нее рамка с сенсорами. Таким образом, имитируется прохождение через сенсор границы жидкость-газ.

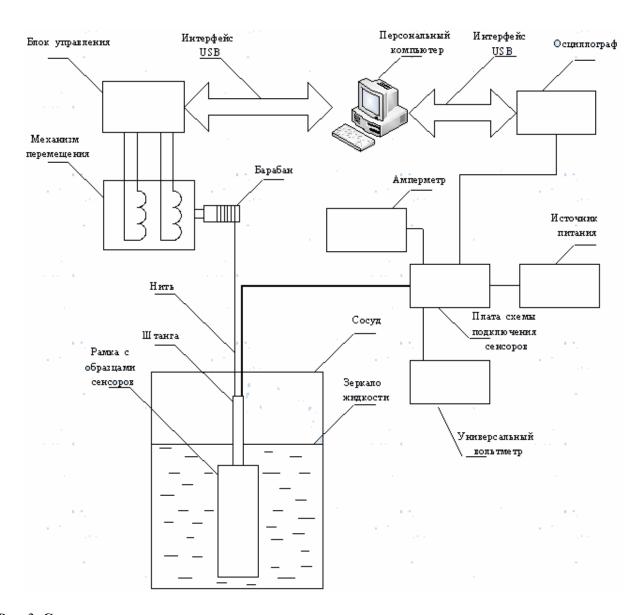


Рис. 3. Схема измерения терморезисторных сенсоров с использованием механизма перемещения (шаговый двигатель или микрометрическая головка)

Испытываемые сенсоры устанавливаются на рамке, как показано на рис. 4. Рамка крепится к штанге (рис. 3) и подвешивается на нити. Вертикальное перемещение рамки осуществляется с известной скоростью с помощью вращения барабана, установленного на оси шагового двигателя. Растяжение нити не учитывается, так как оно не изменяется в процессе измерений.

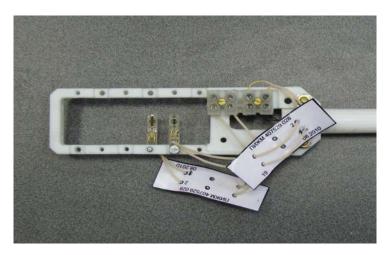


Рис. 4. Рамка с терморезисторами

Порядок проведения эксперимента

Испытываемый сенсор помещается на рамке в жидкость, производится балансировка моста: в диагонали моста устанавливается напряжение не менее $-10\,$ мВ и не более $+10\,$ мВ. Включается шаговый двигатель, рамка с сенсором медленно поднимается, при этом граница жидкость-газ постепенно проходит по всей длине терморезистора, и он попадает в газовую среду. Далее на шаговом двигателе изменяется направление вращения оси на противоположное, и штанга с сенсором погружается обратно в жидкость.

С помощью осциллографа снимается зависимость падения напряжения в диагонали моста от времени. В качестве примера на рис. 5 приведена осциллограмма для сенсора, погружаемого в жидкость со скоростью 1 мм/с. Начальное время (t_0) соответствует минимальному значению напряжения U_0 (не более 10 мВ), когда сенсор полностью находился в жидкости. Конечное время (t_2) соответствует максимальному значению напряжения U_1 (не менее 150 мВ), когда сенсор полностью перешел в газовую среду.

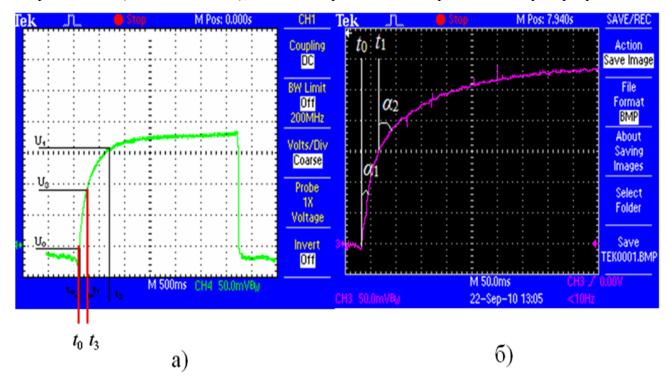


Рис. 5. Осциллограммы изменения напряжения в диагонали измерительного моста при переходе границы жидкость-газ: а) определение пороговых значений, б) определение углов α_1 , α_2

Для определения порогового значения напряжения срабатывания U_3 сенсора воспользуемся методикой [1]. Для этого вычисляется разность напряжений $\Delta U = U_1 - U_0$, рассчитывается напряжение $U_2 = 0,63\Delta U$. Значение напряжения срабатывания U_3 рассчитывается по формуле:

$$U_3 = U_0 + U_2$$
.

Из осциллограммы видно, что срабатывание датчика (фиксирование порогового напряжения U_3) происходит с некоторой задержкой во времени ($t_{3a\partial} = t_0 - t_I$) с того момента, как граница жидкость-газ начинает перемещаться по терморезистору. За время $t_{3a\partial}$ граница жидкость-газ успевает переместиться на некоторое расстояние l. Для определения этого перемещения уровня жидкости предложено измерять в ходе эксперимента время задержки сигнала (переходного процесса) $t_{3a\partial}$ сенсора при прохождении им зеркала жидкости и скорость v перемещения рамки с сенсором. Изменение уровня в контрольной точке, в которой расположен сенсор, определяется длиной отрезка l, равного:

$$l=v t_{3aA}$$
,

где v — скорость перемещения рамки с сенсором; $t_{\text{зад}}$ — время задержки.

Таким образом, величина l является абсолютной погрешностью измерения уровня сенсором.

Относительная погрешность определения l равна сумме относительных погрешностей времени задержки и скорости перемещения зеркала жидкости:

$$\delta l = \delta v + \delta t_{\text{зал}}$$

где δv — относительная погрешность скорости перемещения сенсора внутри сосуда, ее величина зависит от характеристик шагового двигателя.

В экспериментальной установке используется двигатель FL42STH47-1684A. Угловой шаг двигателя составляет 1,8°; погрешность угловая не более 5,4'; относительная угловая погрешность 5 %. Диаметр барабана 6,6 мм. Вращение двигателя со скоростью 154 шага в секунду приводит к перемещению рамки с сенсорами со скоростью 1 мм/с с относительной погрешностью 5 %.

Абсолютная погрешность измерения временных интервалов осциллографа TDS 2024, согласно данным внесенным в государственный реестр (регистрационный номер 32618.06), составляет:

$$\Delta_{\text{H}} = +\text{Kp}/250+50\cdot10^{-6}\cdot T_{u_{3M}}+0.6 \text{ Hc},$$

где Kp – коэффициент развертки осциллографа; $T_{\scriptscriptstyle \mathit{U3M}}$ – измеренный интервал времени.

Абсолютная погрешность измерения времени задержки $t_{\text{зад}}$ ЧЭ ДКУ при прохождении границы жидкость-газ определяется как сумма двух абсолютных погрешностей:

$$\Delta t_{3a\pi} = \Delta_{\mu} + \Delta_{dn}$$

где $\Delta_{\text{и}}$ — абсолютная погрешность измерения временного интервала осциллографом; $\Delta_{\text{фр}}$ — дополнительная абсолютная погрешность измерения временного интервала, зависящая от крутизны фронта и скачка напряжения сигнала.

Для интервалов 0.01–0.2 с абсолютная погрешность измерения временного интервала $\Delta_{\rm u}$ может быть вычислена с использованием упрощенной формулы:

$$\Delta_{\rm M} = {\rm Kp}/250$$
,

где Кр – коэффициент развертки осциллографа.

Дополнительная абсолютная погрешность измерения временных интервалов $\Delta_{\varphi p}$ определяется:

$$\Delta_{\phi p} = \pm \sqrt{tg^2 \alpha_1 + tg^2 \alpha_2} \cdot \Delta_u,$$

где α_1 – угол между линией графика осциллограммы и вертикальной осью в точке t_0 (рис. 5, б); α_2 – угол между линией графика осциллограммы и вертикальной осью в точке t_1 . На рис. 5 б) α_1 =12°; α_2 =45°.

Относительная погрешность измерения времени задержки $t_{3ад}$ сенсора, переходная характеристика которого представлена на рис. 5 б), равна 10,1 %.

В результате, относительная погрешность измерения изменения уровня l:

$$\delta l = \delta v + \delta t_{\text{3a}} = 15,1 \%$$
.

В ходе работы была проведена серия измерений l на двенадцати различных сенсорах при переходе границы жидкость-газ со скоростью 1 мм/с. Результаты испытаний приведены в таблице.

Таблица

№ сенсора	U ₀ , мВ	U ₁ , мВ	U ₂ , MB	U ₃ , мВ	$t_{3 a \mu}$, мс	l, mm
3	2	95,24	150	93,24	38	0,04
5	-2	93,76	150	95,76	50	0,05
6	-2	95,02	152	97,02	22	0,02
9	-8	91,54	150	99,54	50	0,05
10	0	95,76	152	95,76	22	0,02
14	2	95,24	150	93,24	36	0,04
17	-4	95,54	154	99,54	96	0,10
18	0	94,50	150	94,50	26	0,03
19	-2	93,76	150	95,76	38	0,04
30	10	99,46	152	89,46	54	0,05
38	-2	95,02	152	97,02	28	0,03
46	2	95,24	150	93,24	44	0,04

В ходе работы так же проводились испытания на меньших и больших скоростях перемещения сенсоров.

На рис. 6 представлен график изменения сигнала в диагонали измерительного моста при перемещении сенсора, пересекающего зеркало жидкости, с шагом 0,1 мм. Измерения производились при низкой скорости перемещения сенсора не более 0,5 мм/с, поэтому экспериментальная характеристика, изображенная на графике, отличается от осциллограмм. На начальном участке медленное увеличение сигнала объясняется влиянием колебаний верхнего слоя жидкости в результате кипения. Резкое увеличение сигнала происходит в интервале 0,1 мм. Этот интервал определяет погрешность измерения изменения уровня жидкости.

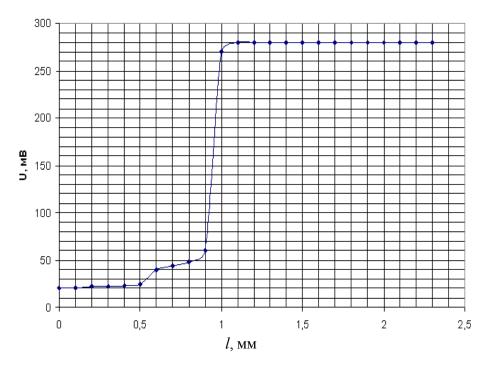


Рис. 6. Экспериментальная зависимость изменения сигнала при перемещении уровня жидкости

Следует отметить, что при больших скоростях перемещения уровня, более $1\,\mathrm{mm/c}$, предложенная методика оценки погрешности l не применима, так как невозможно на крутом фронте установить пороговое значение напряжения U_3 , по которому определяется расстояние перемещения при пересечении сенсором границы зеркала жидкости.

Для подтверждения полученных результатов при более высокой скорости изменения уровня жидкости были изготовлены сенсоры с двумя терморезисторами на одной подложке, расположенные на расстояниях 0,5 мм и 1,2 мм друг от друга. Изготовленный сенсор с двумя терморезисторами представлен на рис. 7.

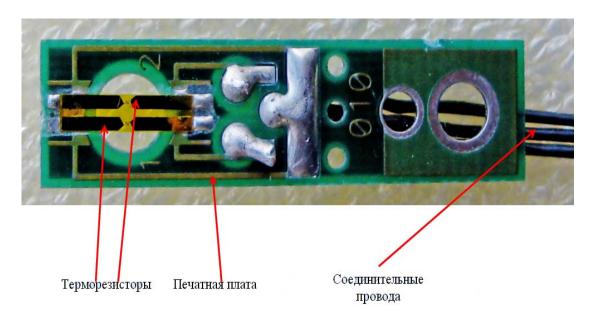


Рис. 7. Сенсор с двумя терморезисторами, расположенными на расстоянии 1,2 мм

Осциллограммы с переходными характеристиками сенсоров с двумя терморезисторами, расположенными друг от друга на расстоянии 0,5 и 1,2 мм, представлены на рис. 8.

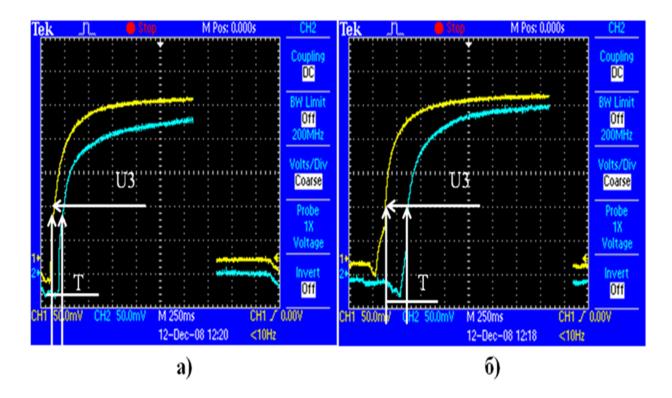


Рис. 8. Осциллограммы изменения напряжения в диагонали измерительного моста при переходе границы жидкость-газ двух терморезисторов, расположенных на расстоянии: a) 0,5 мм; б) 1,2 мм

При пересечении зеркала жидкости верхним резистором нижний находился в жидкости в течение 0,1 и 0,25 с (рис. 8). По истечении этого времени напряжение в диагонали измерительного моста верхнего резистора начинало возрастать.

Результаты измерений с использованием двух терморезисторов на одной подложке подтверждают результаты, полученные с помощью измерений времени задержки переходной характеристики: время задержки не более $50\,$ мс. Погрешность измерения уровня при скорости изменения уровня $\sim 5\,$ мм/с не более $0,12\,$ мм, что значительно меньше расстояния между резисторами.

Разработанный метод измерения уровня с использованием терморезисторов, изготовленных методами микроэлектроники на тонких теплоизоляционных подложках, позволяет определять изменения уровней криогенных сред с погрешностью не более $0,5\,$ мм и быстродействием менее $0,2\,$ с.

Достоинством предложенного метода является возможность автоматизировать процесс измерения (заменяя измерения механических перемещений электронными измерениями временных интервалов).

При использовании современных методов построения измерительных систем на микропроцессорах, в которых для определения состояния применяются пороговые значения, предложенный метод является наиболее приемлемым.

Литература

1. Фрайден Дж. Современные датчики: справ.; пер. с англ. М.: Техносфера, 2006. 188 с.