МОДЕЛИРОВАНИЕ ПОВЕДЕНИЯ УГЛЕРОДНЫХ НАНОЧАСТИЦ С₆₀ ПРИ НАГРЕВЕ В АТМОСФЕРЕ АРГОНА. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

В.П. Дан. Уральский институт ГПС МЧС России

Наноуглерод С₆₀ является одним из наиболее распространенных представителей фуллеренов. В настоящее время понятие «фуллерены» применяется к широкому классу многоатомных молекул углерода. Наиболее эффективный способ получения фуллеренов – термическое разложение графита. Однако термические свойства углеродных наноматериалов еще недостаточно хорошо изучены. В работе изучалось поведение наноуглерода С₆₀ при нагревании в среде аргона при атмосферном давлении. Исследования проводились методом термодинамического моделирования.

Ключевые слова: наноуглерод, фуллерены, нагрев в атмосфере аргона, метод термодинамического моделирования морет INC THE DELLA VIOD OF CARDON NANODADTICLES C

MODELING THE BEHAVIOR OF CARBON NANOPARTICLES C₆₀ BY HEATING IN AN ARGON ATMOSPHERE. COMPUTER EXPERIMENT

V.P. Dan. Ural institute of the State fire service of EMERCOM of Russia

Nanocarbon C_{60} is one of the most common representatives of fullerenes. Currently, the concept of «fullerenes» is applied to a broad class of polyatomic molecules of carbon. The most effective method for producing fullerenes – thermal decomposition graphite. The thermal properties of carbon nanomaterials is still not well understood. In the nanocarbon C_{60} studied behavior when heated in argon at atmospheric pressure. Research carried out by thermodynamic modeling.

Keywords: nanocarbon, fullerene, heating in an argon atmosphere, thermodynamic simulation method

Анализ тенденций развития мировой наноиндустрии позволяет сделать вывод о том, что одной из наиболее перспективных областей в этой отрасли является производство углеродных наноматериалов, таких как фуллерены, нанотубулены (углеродные нанотрубки) и нановолокна на их основе, малые углеродные наночастицы [1].

Термодинамическое моделирование заключается в термодинамическом анализе равновесного состояния системы в целом (полный термодинамический анализ) [2, 3]. Одной из наиболее развитых и эффективных программ, реализующих такие термодинамические расчеты, является программный комплекс TERRA, представляющий собой этап дальнейшего развития пакета программ ASTRA [4].

Термодинамическое моделирование успешно применяется при изучении поведения радиоактивного графита при нагреве в различных средах [5–7]. Также термодинамическое моделирование успешно применялось в физике и материаловедении.

Расчеты состава фаз и характеристик равновесия проводятся с использованием справочной базы данных по свойствам индивидуальных веществ.

Проведенный компьютерный эксперимент позволяет определить фазовое распределение углерода в системе C_{60} -Ar на всем рассматриваемом температурном интервале.

Зависимость состава газовой фазы от температуры в системе C₆₀-Ar

В температурном диапазоне от 2 473 К до 4 073 К содержание пара C₃ возрастает и достигает $2,570 \cdot 10^{-3}$ мол. дол. При дальнейшем увеличении температуры до 4 273 К концентрация уменьшается до $2,239 \cdot 10^{-3}$ мол. дол.

В температурном интервале от 2 573 К до 4 273 К концентрация пара С параболически увеличивается и достигает 1,318·10⁻³ мол. дол.

Содержание C_2 в температурном диапазоне от 2 673 К до 4 273 К равномерно возрастает и достигает 8,511 \cdot 10⁻⁴ мол. дол.

В температурном интервале от 2 873 К до 3 973 К концентрация пара C₅ стремительно увеличивается до $1,380 \cdot 10^{-4}$ мол. дол., а при увеличении температуры до 4 273 К так же стремительно уменьшается до $6,456 \cdot 10^{-5}$ мол. дол.

Содержание C₄ в температурном интервале от 2 973 К до 4 073 К увеличивается до $4,169 \cdot 10^{-5}$ мол. дол. При увеличении температуры до 4 273 К концентрация компонента плавно уменьшается до $3,311 \cdot 10^{-5}$ мол. дол.

Зависимость состава конденсированной фазы от температуры в системе С₆₀-Аг

В температурном диапазоне от 473 К до 3 973 К наблюдается линейное уменьшение концентрации конденсированного С с 0,017 мол. дол. до 0,009 мол. дол.

В температурном диапазоне от 473 К до 3 573 К концентрация конденсированного C_2 плавно увеличивается до 3,162·10⁻³ мол. дол., а при увеличении температуры до 3 973 К линейно уменьшается до 2,4491·10⁻³ мол. дол.

В температурном диапазоне от 773 К до 3 573 К содержание конденсированного C_3 плавно увеличивается до 7,244·10⁻⁴ мол. дол. При увеличении температуры до 3 773 К – незначительно уменьшается до 6,456·10⁻⁴ мол. дол., а при достижении температуры 3 973 К возрастает до 7,943·10⁻⁴ мол. дол.

В температурном интервале от 1 073 К до 3 473 К концентрация конденсированного C₄ плавно увеличивается до 1,698 \cdot 10⁻⁴ мол. дол. При увеличении температуры от 3 473 К до 3 973 К – уменьшается до 1,175 \cdot 10⁻⁴ мол. дол.

В интервале температур от 1 373 К до 3 273 К содержание конденсированного С₅ плавно увеличивается до $3,019\cdot10^{-5}$ мол. дол. При увеличении температуры до 3 973 К линейно возрастает до $7,079\cdot10^{-4}$ мол. дол.

В температурном диапазоне от 3 373 К до 3 573 К наблюдается стремительный линейный рост концентрации конденсированного C_{94} до 2,818·10⁻⁴ мол. дол. При дальнейшем увеличении температуры до 3 973 К концентрация возрастает менее стремительно и достигает 1,995·10⁻³ мол. дол.

Содержание конденсированного C₈₄ в температурном интервале от 3 373 К до 3 573 К линейно возрастает до 4,667 $\cdot 10^{-3}$ мол. дол. При дальнейшем повышении температуры до 3 973 К интенсивность увеличения концентрации уменьшается и достигает 3,631 $\cdot 10^{-4}$ мол. дол.

Концентрация конденсированного C_{90} в температурном интервале от 3 373 К до 3 573 К линейно возрастает и достигает 3,890·10⁻⁵ мол. дол., а при повышении температуры до 3 973 К достигает 2,512·10⁻⁴ мол. дол.

В температурном интервале от 3 373 К до 3 573 К концентрация конденсированного C_{76} так же линейно возрастает и достигает 1,096 \cdot 10⁻⁵ мол. дол. В температурном интервале от 3 573 К до 3 973 К увеличивается до 1,023 \cdot 10⁻⁴ мол. дол.

Описание реакций проводилось на основе графиков с выделением температурных интервалов протекания реакций.

В рассматриваемой системе протекают физико-химические процессы, которые можно разбить на четыре группы (табл.).

Таблица. Реакции, п	ротекающие в	системе	C ₆₀ -Ar
---------------------	--------------	---------	---------------------

No	Наименование группы	Реакция	Температурный интервал протекания реакции, °К
Реакции молизации, протекающие в конденсированной фазе		$2C_{(s1)} = C_{2(s1)}$	773–3373
		$3C_{(s1)} = C_{3(s1)}$	1273–3373
		$4C_{(s1)} = C_{4(s1)}$	1973–3373
	$3C_{(s1)} = C_3$	2673-3473	
	в конденсированной фазе	$76C_{3(s1)} = 3C_{76(s1)}$	3373-3773
		$35C_{2(s1)} = C_{70(s1)}$	3373–3873
		$42C_{2(s1)} = C_{84(s1)}$	3373–3673
		$45C_{2(s1)} = C_{90(s1)}$	3373-3673
	Реакция термической диссоциации,		
2	протекающая	$3C_{94(s1)}=94C_{3(s1)}$	3673–3973
	в конденсированной фазе		
3	Реакция испарения с молизацией	$5C_{3(s1)}=3C_5$	3373–3773
4	Реакции испарения с термической диссоциацией	$5C_{84(s1)} = 84C_5$	3573–3773
		$C_{94(s1)} = 94C$	3573-4273
		$C_{94(s1)} = 47C_2$	3373-4273

По этим уравнениям, используя найденные в модельных расчетах концентрации (в мольных долях) компонентов конденсированной и газовой фаз, были рассчитаны соответствующие константы равновесия.

Литература

1. Елисеев А.А., Чернышева М.В. Углеродные материалы: курс лекций М., 2006. 79 с.

2. Modeling of radioactive graphite oxidation in molten salts. Book of abstracts / N.M. Barbin [et al] // Scientific basis for nuclear waste management: the 33rd international symposium. SPb., 2009. P. 133.

3. Modeling of radioactive graphite oxidation in molten salts: computer experiment / N.M. Barbin [et al] // Material research society symposium proceeding. 2009. 1193. P. 359–366.

4. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных системах. М.: Металлургия, 1994. 352 с.

5. Термодинамическое моделирование поведения америция, цезия и стронция при нагревании радиоактивного графита в среде азота / М.Р. Шавалеев [и др.] // Техносферная безопасность: интернет журн/ 2014. № 2 (3). URL: http://www.uigps.ru/content/nauchnyy-zhurnal/ (дата обращения: 15.05.2016).

6. Термодинамическое моделирование поведения радионуклидов при нагреве (сжигании) радиоактивного графита в атмосфере воздуха / Н.М. Барбин [и др.] // Пожаровзрывобезопасность. 2014. № 3. С. 57–65.

7. Термодинамическое моделирование поведения радионуклидов при нагреве (сжигании) радиоактивного графита в парах воды / Н.М. Барбин [и др.] // Пожаровзрывобезопасность. 2014. № 10. С 38–47.