КОМПЬЮТЕРНОЕ ИССЛЕДОВАНИЕ ТЕРМИЧЕСКИХ СВОЙСТВ НАНОУГЛЕРОДА С₂

В.П. Дан; Н.М. Барбин, доктор технических наук. Уральский институт ГПС МЧС России

Посредством компьютерного термодинамического моделирования исследовано поведение углеродных наночастиц C₂ при нагреве в среде аргона при атмосферном давлении. Построены графики зависимости составов газовой и конденсированной фаз от температуры в системе C₂-Ar. Построены графики зависимости констант равновесия реакций с ростом температуры.

Ключевые слова: термодинамическое моделирование, константы равновесия, углеродная наночастица, углеродные нанотрубки, нагревание

A STUDY OF THE THERMAL PROPERTIES OF NANOCARBON C2

V.P. Dan; N.M. Barbin.

Ural institute of State fire service of EMERCOM of Russia

Computer simulation of the thermodynamic behavior during heating in argon at atmospheric pressure of the carbon nanoparticles C_2 was investigated. Plots of compositions of gas and condensed phases on temperature in the system C_2 -Ar were built. Curves of dependence of the equilibrium constants of the reactions with increasing temperature were made.

Keywords: thermodynamic modeling, equilibrium constant, carbon nanoparticles, carbon nanotubes, heating

В работе изучалось поведение наноуглерода C₂ при нагревании в среде аргона при атмосферном давлении. Исследования проводились методом термодинамического моделирования.

Термодинамическое моделирование заключается в термодинамическом анализе равновесного состояния системы в целом (полный термодинамический анализ) [1, 2]. Одной из наиболее развитых и эффективных программ, реализующих такие термодинамические расчеты, является программный комплекс TERRA, представляющий собой этап дальнейшего развития пакета программ ASTRA [3].

Термодинамическое моделирование успешно применяется при изучении поведения радиоактивного графита при нагреве в различных средах [4–8], а также в физике и материаловедении [9, 10].

Расчеты состава фаз и характеристик равновесия проводятся с использованием справочной базы данных по свойствам индивидуальных веществ [11, 12].

Проведенный компьютерный эксперимент позволяет определить фазовое распределение углерода в системе C₂-Ar на всем рассматриваемом температурном интервале.

Зависимость состава газовой фазы от температуры в системе C₂-Ar представлена на рис. 1.

Рис. 1. Зависимость состава газовой фазы от температуры в системе при давлении 10⁵ Па

В температурном диапазоне от 2 473 К до 4 073 К содержание пара C₃ возрастает и достигает 7,76 \cdot 10⁻² мол. дол. При дальнейшем увеличении температуры до 4 273 К концентрация уменьшается до 6,76 \cdot 10⁻² мол. дол.

В температурном интервале от 2 573 К до 4 273 К концентрация пара С параболически увеличивается и достигает 3,98·10⁻² мол. дол.

Содержание пара C_2 в температурном диапазоне от 2 673 К до 4 273 К равномерно возрастает и достигает 2,57 $\cdot 10^{-2}$ мол. дол.

В температурном интервале от 2 873 К до 3 973 К концентрация пара C₅ стремительно увеличивается до $4,07 \cdot 10^{-3}$ мол. дол., а при увеличении температуры до 4 273 К так же стремительно уменьшается до $1,90 \cdot 10^{-3}$ мол. дол..

Содержание пара C₄ в температурном интервале от 2 973 К до 4 073 К увеличивается до $1,26 \cdot 10^{-3}$ мол. дол.. При увеличении температуры до 4 273 К концентрация компонента плавно уменьшается до $1 \cdot 10^{-3}$ мол. дол.

В температурном диапазоне от 3 973 К до 4 273 К концентрация ионов C⁺ достигает $8,12\cdot10^{-7}$ мол. дол., а электронов е – $6,76\cdot10^{-7}$ мол. дол.

В температурном диапазоне от 4 073 К до 4 273 К концентрация ионов C^{2-} линейно возрастает до 2,63 \cdot 10⁻⁷ мол. дол.

Ионы C^{2+} при температуре 4 273К достигают концентрации 1,12·10⁻⁷ мол. дол.

Зависимость состава конденсированной фазы от температуры для C_2 представлена на рис. 2.

Рис. 2. Зависимость состава конденсированной фазы от температуры в системе при давлении 10⁵ Па

В температурном диапазоне от 473 К до 3 973 К наблюдается линейное уменьшение концентрации конденсированного С с 0,501 мол. дол. до 0,295 мол. дол.

В температурном диапазоне от 473 К до 3 573 К концентрация конденсированного C_2 плавно увеличивается до 9,55 $\cdot 10^{-2}$ мол. дол., а при увеличении температуры до 3 973 К линейно уменьшается до 7,41 $\cdot 10^{-2}$ мол. дол.

В температурном диапазоне от 773 К до 3 573 К содержание конденсированного C₃ плавно увеличивается до $2,19\cdot10^{-2}$ мол. дол.. При увеличении температуры до 3 773 К – незначительно уменьшается до $1,94\cdot10^{-3}$ мол. дол., а при достижении температуры 3 973 К составляет $2,34\cdot10^{-2}$ мол. дол..

В температурном интервале от 1 073 К до 3 473 К концентрация конденсированного С₄ плавно увеличивается до $5,01 \cdot 10^{-3}$ мол. дол. При увеличении температуры от 3 473 К до 3 973 К – уменьшается до $3,55 \cdot 10^{-3}$ мол. дол.

В интервале температур от 1 373 К до 3 273 К содержание конденсированного C_5 плавно увеличивается до 9,12·10⁻⁴ мол. дол.. При увеличении температуры до 3 973 К линейно возрастает до 2,14·10⁻² мол. дол.

В температурном диапазоне от 3 373 К до 3 573 К наблюдается стремительный линейный рост концентрации конденсированного C_{94} до $8,51\cdot10^{-3}$ мол. дол. При дальнейшем увеличении температуры до 3 973 К концентрация возрастает менее стремительно и достигает $5,89\cdot10^{-2}$ мол. дол.

Содержание конденсированного C₈₄ в температурном интервале от 3 373 К до 3 573 К линейно возрастает до $1,32 \cdot 10^{-3}$ мол. дол. При дальнейшем повышении температуры до 3 973 К интенсивность увеличения концентрации уменьшается и достигает $1,07 \cdot 10^{-2}$ мол. дол.

Концентрация конденсированного C₉₀ в температурном интервале от 3 373 К до 3 573 К линейно возрастает и достигает 1,15 \cdot 10⁻³ мол. дол., а при повышении температуры до 3 973 К достигает 7,58 \cdot 10⁻³ мол. дол.

В температурном интервале от 3 373 К до 3 573 К концентрация конденсированного С₇₆ так же линейно возрастает и достигает $3,31\cdot10^{-4}$ мол. дол. В температурном интервале от 3 573 К до 3 973 К увеличивается до $3,02\cdot10^{-3}$ мол. дол.

Содержание конденсированного C_{70} в температурном диапазоне от 3 373 К до 3 573 К достигает 1,55 $\cdot 10^{-4}$ мол. дол.

В температурном интервале от 3 473 К до 3 973 К наблюдается быстрое увеличение концентрации конденсированного C_{60} . Она достигает 3,89·10⁻⁴ мол. дол.

Содержание конденсированного C_{56} в температурном интервале от 3 473 К до 3 973 К достигает 2,51 \cdot 10⁻⁴ мол. дол.

Концентрация конденсированного C_{50} в температурном диапазоне от 3 473 К до 3 973 К достигает 1,35 $\cdot 10^{-4}$ мол. дол.

В температурном интервале от 3 473 К до 3 973 К содержание конденсированного C44 достигает 8,71·10⁻⁵ мол. дол.

В температурном интервале от 3 473 К до 3 973 К концентрации конденсированных С₃₂ и С₂₈ достигают $5,37\cdot10^{-5}$ мол. дол. и $5,75\cdot10^{-5}$ мол. дол. соответственно.

Описание реакций проводилось на основе графиков распределения баланса с выделением температурных интервалов.

В системе протекают физико-химические процессы, которые можно разбить на четыре группы (табл. 1).

№	Наименование группы	Реакция Температурный интервал протекания реакции, °К	
1	2	3	4
1		$2C(\kappa)=C2(\kappa)$	773–3373
		3С(к)=С3(к)	1273–3373
		$4C(\kappa)=C4(\kappa)$	1973–3373
	Реакции молизации, протекающие	3С(к)=С3	2673-3473
	в конденсированной фазе	76С3(к)=3С76(к)	3473-3773
		35С2(к)=С70(к)	3473-3873
		42С2(к)=С84(к)	3473–3673
		45С2(к)=С90(к)	3473–3673
2	Реакция термической диссоциации, протекающая в конденсированной фазе	3С94(к)=94С3(к)	3673–3973
3	Реакция испарения с молизацией	5С3(к)=3С5	3473-3773
4		5С84(к)=84С5	3673-3873
	Реакции испарения с термической	С94(к)=94С	3573–3973
	диссоциацией	С94(к)=47С2	3373–3973

Таблица 1. Реакции, протекающие в системе C2-Ar

По этим уравнениям, используя найденные в модельных расчетах концентрации (в мольных долях) компонентов конденсированной и газовой фаз, были рассчитаны соответствующие константы равновесия. Они представлены аналитическими уравнениями вида:

$LnK_i = A_i + B_i(1/T)$

Коэффициенты (A) и (B) реакций рассчитаны методом наименьших квадратов и приведены в табл. 2.

№	Реакция	ΔT, °K	А	В	\mathbb{R}^2
1	2	3	4	5	6
1	$2C_{(\kappa)} = C_{2(\kappa)}$	773–3373	-2508,1	-1,4829	0,9983
2	$3C_{(\kappa)} = C_{3(\kappa)}$	1273-3373	-5256,1	-2,5559	0,998
3	$4C_{(\kappa)} = C_{4(\kappa)}$	1973-3373	-8540,6	-3,4368	0,9983
4	$3C_{(\kappa)}=C_3$	2673-3473	-47064	9,2383	0,9956
5	$C_{94(\kappa)} = 47C_2$	3373-3973	-2E+06	508,71	0,9991
6	$42C_{2(\kappa)} = C_{84(\kappa)}$	3473-3673	-3E+06	731,42	1
7	$45C_{2(\kappa)} = C_{90(\kappa)}$	3473-3673	-3E+06	783,19	1
8	$5C_{3(\kappa)}=3C_5$	3473-3773	-205403	56,186	0,9991

Таблица 2. Коэффициенты констант реакций

9	$76C_{3(\kappa)} = 3C_{76(\kappa)}$	3473-3773	-4E+06	1283,3	0,9942			
10	$35C_{2(\kappa)} = C_{70(\kappa)}$	3473-3873	-2E+06	531,92	0,9938			
11	С _{94(к)} =94С	3573-3973	-4E+06	998,52	0,999			
12	$5C_{84(\kappa)} = 84C_5$	3673-3873	903775	-397,88	0,9948			
13	$3C_{94(\kappa)}=94C_{3(\kappa)}$	3673-3973	4E+06	-1125	0,994			
R – точность								

Проведенное компьютерное термодинамическое моделирование поведения наноуглерода С₂ при нагревании в среде инертного газа (аргона) при атмосферном давлении позволило определить процессы и температурные диапазоны, в которых они протекают, а так же построить графики зависимостей составов фаз от температуры в рассматриваемой системе, рассчитать константы реакций.

Литература

1. Modeling of radioactive graphite oxidation in molten salts. Book of abstracts / N.M. Barbin [et al.] // Scientific basis for nuclear waste management: the 33rd international symposium. SPb., 2009. P. 133.

2. Modeling of radioactive graphite oxidation in molten salts: computer experiment / N.M. Barbin [et al.] // Material research society symposium proceeding. 2009. 1 193. P. 359–366.

3. Ватолин Н.А., Моисеев Г.К., Трусов Б.Г. Термодинамическое моделирование в высокотемпературных системах. М.: Металлургия, 1994. 352 с.

4. Термодинамическое моделирование поведения америция, цезия и стронция при нагревании радиоактивного графита в среде азота / М.Р. Шавалеев [и др.] // Техносферная безопасность: интернет журн. 2014. № 2 (3). URL: http://www.uigps.ru/content/nauchnyy-zhurnal/ (дата обращения: 09.04.2016).

5. Термодинамическое моделирование поведения радионуклидов при нагреве (сжигании) радиоактивного графита в атмосфере воздуха / Н.М. Барбин [и др.] // Пожаровзрывобезопасность. 2014. № 3. С. 57–65.

6. Термодинамическое моделирование поведения радионуклидов при нагреве (сжигании) радиоактивного графита в парах воды / Н.М. Барбин [и др.] // Пожаровзрывобезопасность. 2014. № 10. С. 38–47.

7. Расчет термодинамических свойств системы радиоактивный графит – азот при нагревании / М.Р. Шавалеев [и др.]: материалы XIV Рос. конф. (с междунар. участием) по теплофизическим свойствам веществ (РКТС-14): в 2-х т. Казань: Изд-во «Отечество», 2014. С. 206–208.

8. Термодинамическое моделирование паровой фазы при испарении расплавленного сплава Вуда при различных давлениях / Н.М. Барбин [и др.] // Прикладная физика. 2014. № 3. С. 12–16.

9. Нагревание наноуглеродной частицы С₉₄ при атмосферном давлении в среде аргона / В.П. Дан [и др.] // Техносферная безопасность. 2015. № 1. С. 19–22. URL: http://uigps.ru/ content/nauchnyy-zhurnal (дата обращения: 09.04.2016).

10. The behavior of Eu, Pu, Am radionuclide at burning radioactive graphite in an oxygen atmosphere. Computer experiment / T.S. Kolbin [et al] // EPJ Web of Conferences 82, 01013 (2015).

11. Гуревич Л.В., Вейц И.В., Медведев В.А. Термодинамические свойства индивидуальных веществ: справ. изд.: в 4-х т. М.: Наука, 1982. 8 540 с.

12. Алемасов В.Е., Дергалин А.Ф., Тишин А.П. Термодинамические и теплофизические свойства продуктов сгорания: справ.: в 5 т. М.: ВНИИТИ, 1971. 6 350 с.