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Аннотация. Представлен научно-методический аппарат краткосрочного прогнозирования 
ущерба от природных чрезвычайных ситуаций и обоснования объемов привлекаемых сил 
и технических средств на основе каскада моделей машинного обучения. Разработана 
трехэтапная структура: М-1 – прогноз прямого экономического ущерба, М-2 – расчет 
численности привлекаемых сил, М-3 – определение потребности в технических средствах. 
Интегрированы данные EM-DAT, отчетов МЧС России, Федеральной службы государственной 
статистики (Росстата) и UNECE, дополненные синтетическими наблюдениями методом Gaussian 
Copula. Интегрированы данные EM-DAT, отчетов МЧС России, Росстата и UNECE, 
дополненные синтетическими наблюдениями методом Gaussian Copula. Сравнивались 
LightGBM, CatBoost и многослойная нейронная сеть (MLP). На отложенной тестовой выборке 
(20 % наблюдений; уровень агрегации – субъект/регион; цель – логарифм прямого ущерба) MLP 

обеспечила MAE прогноза прямого ущерба 350 075 тыс. руб. (  = 0,35) – это средняя 

абсолютная ошибка на одно событие чрезвычайной ситуации при сопоставлении 
с фактическими данными. Для задач оценки численности сил и средств средняя абсолютная 
ошибка составила 32 чел. и 14 ед. техники соответственно на отложенной выборке, что лучше 
бустинговых моделей (108–111 чел. и 41–62 ед.). SHAP-анализ подтвердил ключевую роль 
социально-демографических показателей при прогнозировании ущерба и ресурсных 
потребностей. Научная новизна работы состоит в формировании воспроизводимого каскадного 
подхода, объединяющего краткосрочный прогноз ущерба и обоснование ресурсных решений, 
что позволяет использовать разработку в ведомственных системах поддержки оперативного 
планирования. Методика может быть масштабирована на техногенные и комбинированные 
сценарии. 
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Abstract. A scientific and methodological framework is presented for short-term forecasting 
of damage from natural disasters and for substantiating the required volumes of response personnel 
and technical equipment based on a cascade of machine learning models. A three-stage structure has 
been developed: M-1 – prediction of direct economic damage, M-2 – estimation of the number 
of deployed personnel, M-3 – determination of the need for technical equipment. The model integrates 
data from EM-DAT, reports of the Russian Ministry of Emergency Situations, Rosstat, and UNECE, 
supplemented with synthetic observations generated using the Gaussian Copula method. Three 
algorithms were compared: LightGBM, CatBoost, and a multilayer perceptron (MLP). On the hold-out 
test sample (20 % of observations; aggregation level – region; target – logarithm of direct damage), 

the MLP achieved a mean absolute error (MAE) of 350,075 thousand rubles  = 0,35) for damage 

prediction, corresponding to the average absolute error per disaster event when compared with actual 
data. For estimating the required personnel and equipment, the mean absolute error was 32 people 
and 14 units of equipment, respectively, outperforming the boosting models (108–111 people 
and 41–62 units). SHAP analysis confirmed the key role of socio-demographic indicators in forecasting 
both damage and resource requirements. The scientific novelty of the study lies in the development 
of a reproducible cascade approach that combines short-term damage forecasting with resource 
allocation, making it applicable in agency-level operational planning systems. The methodology can be 
further scaled to technological and combined disaster scenarios. 
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Введение 

 

В условиях глобального изменения климата и непрерывного роста техногенной нагрузки 
наблюдается увеличение частоты и силы природных чрезвычайных ситуаций (ЧС), приводящих 
к существенным экономическим потерям и рискам для населения [1–3]. Эффективное 
управление такими рисками требует не только оперативного прогнозирования возможного 
ущерба, но и заблаговременного планирования объемов привлекаемых сил и средств. 
Традиционные методики оценки ущерба, основанные преимущественно на линейных 
регрессионных зависимостях между физическими характеристиками опасного явления 
и последствиями, обладают рядом ограничений [4–6]: 

– отсутствие учета социально-демографических переменных. Факторы уязвимости 
территории (плотность населения, возрастная структура, уровень безработицы и т.п.) зачастую 
оказывают сопоставимое или более сильное влияние на итоговый ущерб, чем 
метеорологические показатели; 
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– линейность предположений. Взаимодействие природных и антропогенных факторов 

имеет выраженную нелинейную природу, которую статистические модели описывают 

неполно; 

– разобщенность этапов прогноза и планирования. Оценка ущерба и обоснование сил 

и средств традиционно рассматриваются как независимые процессы, что затрудняет 

оптимальное распределение ресурсов. 

Методы машинного обучения (ML) позволяют преодолеть указанные недостатки [7]. 

Ансамблевые алгоритмы и глубокие нейронные сети способны: 

– моделировать сложные нелинейные зависимости между множеством разнотипных 

признаков; 

– интегрировать природные, социально-экономические и инфраструктурные данные 

без предварительных упрощений; 

– объяснимость результатов с помощью современного инструментария (SHAP-

диаграммы), что важно для управленческих решений. 

Настоящее исследование направлено на разработку единого научно-методического 

аппарата, включающего три взаимосвязанные модели: 

– модель 1 используется для прогноза экономического ущерба от ЧС с учетом 

природных и социально-демографических факторов (М-1); 

– модель 2 прогнозирует требуемые человеческие силы с учетом оцененного 

ущерба (М-2); 

– модель 3 вычисляет потребности в технических средствах, базируется на прогнозе 

ущерба и социально-демографических показателях (М-3). 

В работе подробно описаны архитектура и исходные данные, представлена методика 

обучения моделей искусственного интеллекта. Проведено сравнение полученных моделей 

и отмечены перспективы внедрения в ведомственные системы поддержки управленческих 

решений. 

Комплексное использование указанных моделей позволяет не только заранее оценить 

ожидаемые потери, но и сформировать ресурсный план по численности сил и средств, 

минимизирующий суммарный прямой ущерб и затраты на его предотвращение [8–11]. 

Статья посвящена описанию архитектуры, данных и результатов построения всех трех 

моделей. Обсуждаются их сравнительные характеристики и потенциальное применение 

в системах поддержки управленческих решений при планировании мероприятий по защите 

населения и территорий. 

 

Постановка задачи и метод решения 
 

Целью работы является разработка научно-методического аппарата краткосрочного 

прогнозирования ущерба и обоснования объемов сил и средств, включающего: 

– оценку ожидаемого прямого ущерба от природных ЧС на основе природных, 

социальных и инфраструктурных факторов; 

– обоснование объемов сил и средств, необходимых для локализации последствий. 

Каждое наблюдение описывает завершенное событие ЧС и включает: 

– календарный год и физическую интенсивность явления; 

– социально-демографические индикаторы территории (уровень безработицы, общая 

численность населения, количество детей, доля пожилых, плотность населения и др.); 

– фактический экономический ущерб; 

– фактически задействованные силы и средства. 

Отмеченные объемы ресурсов рассматриваются как оптимальные: они сформированы 

органами управления с учетом бюджетных и нормативных ограничений. Следовательно, 

при обучении моделей целесообразно минимизировать отклонение прогнозов от этих 

исторически зафиксированных значений [12]. 
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Для решения поставленных задач формулируются следующие подзадачи: 
– предсказать величину материального ущерба по вектору природных и социально-

демографических признаков. Подзадача решается моделью М-1; 
– определить требуемую численность личного состава, используя тот же признак-

набор и прогнозируемый ущерб. Подзадача решается моделью М-2; 
– оценить потребность в технических средствах. Подзадача решается моделью М-3. 
Для каждой подзадачи обучаются три конкурентных алгоритма: градиентный бустинг 

LightGBM, бустинг CatBoost и глубокая нейронная сеть (MLP). Все модели получают 
единообразно подготовленные данные (заполнение пропусков, логарифмирование целевых 
переменных, нормализация признаков) [13]. Качество оценивается по средней абсолютной 
ошибке (MAE) в исходных единицах измерения – тыс. руб., чел., единиц техники – 

и коэффициенту детерминации  в логарифмической шкале. 

Основной функцией потерь выступает средняя абсолютная ошибка, формула (1). 
 

,                                                       (1) 

 

где  – объем тестовой подвыборки;  – фактическое значение прямого экономического 

ущерба для  наблюдения (тыс. руб.);  – прогнозное значение, полученное моделью. 

Метрика выражается в тех же единицах, что и целевая переменная, что облегчает 

интерпретацию (например, «средняя ошибка прогноза = 120 тыс. руб.»). В отличие от MSE, 

рассматриваемая метрика остается стабильной при наличии аномальных наблюдений 
и эффективна в условиях редких экстремальных событий [14, 15]. 

Коэффициент детерминации  в логарифмической шкале описывается формулой (2). 

 

,                                    (2) 

 

где  – объем тестовой выборки;  – натуральный логарифм фактического значения 

прямого экономического ущерба для  наблюдения;  – натуральный логарифм 

прогнозного значения прямого экономического ущерба для  наблюдения;  – среднее 

логарифмированное фактических значений. 
Переход к лог-шкале: 
– выравнивает асимметричное распределение ущерба; 
– переводит мультипликативные отклонения в аддитивные, делая показатель 

чувствительным к относительной, а не абсолютной ошибке; 

– сохраняет интервал интерпретации : значения ближе к 1 свидетельствуют 

о большем проценте объясненной дисперсии в лог-пространстве. 
Критерий оптимальности заключается в минимизации средних абсолютных 

отклонений между прогнозными и исторически наблюдаемыми объемами ресурсов, 
поскольку последние уже отражают реальные ограничения и практическую 
целесообразность [16, 17]. 

Для лучшей модели каждого класса строятся графики SHAP, позволяющие: 
– выделить ключевые социально-демографические факторы риска (при прогнозе 

ущерба); 
– установить главные драйверы потребности в силах и средствах; 
– предоставить количественные аргументы для управленческих решений региональных 

органов. 
Таким образом, формируется единый подход, обеспечивающий согласованное 

и экономически обоснованное планирование сил и средств при минимальном отклонении 
от эмпирически оптимальных уровней, зафиксированных в исторической статистике. 
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Схема научно-методического аппарата приведена на рис. 1. 
 

 
 

Рис. 1. Схема научно-методического аппарата краткосрочного прогнозирования ущерба 

от природных ЧС и обоснования объемов сил и средств с применением методов ML 
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Для формирования единого массива использованы три публичных и ведомственных 
ресурса, табл. 1. 
 

Таблица 1 
 

Используемые ресурсы для формирования массива данных 
 

Источник Содержание 
Формат 
данных 

EM-DAT (Centre for Research 
on the Epidemiology 

of Disasters) 

Каталог природных ЧС: дата, локация, интенсивность, прямой 
экономический ущерб 

CSV 

UNECE Statistical Database 
Социально-демографическая статистика стран: численность, 
возрастная структура, безработица, плотность населения 

XLSX 

МЧС России 
Оперативные отчеты: реально привлеченные силы и техника, 
уточненные суммы ущерба по регионам Российской Федерации 

DOCX 

Росстат (Федеральная служба 
государственной статистики) 

Подробные показатели населения субъектов Российской 
Федерации: распределение по возрасту, уровню занятости, 
динамика плотности 

XLSX 

 

В данной работе ведется унифицированная обработка исходных и производных 
атрибутов. Их обозначение, краткое содержание и единица измерения сведены в табл. 2. 
 

Таблица 2 
 

Описание используемых атрибутов 
 

Обозначение Описание Ед. изм. 

Регион Код страны – 

Область 
Наименование области 
Российской Федерации 

– 

Год Календарный год ЧС – 

 
(скорость 

распространения 
опасности) 

Количественная характеристика 
интенсивности чрезвычайного явления, 
отражающая темп пространственного 

распространения его поражающих 
факторов 

км/ч 

Размер ущерба Прямой экономический ущерб тыс. руб. 

Уровень 
безработицы 

Доля безработных в общей численности % 

Общая 
численность 

Совокупное население региона чел. 

Дети (0-17) Численность населения 0–7 лет чел. 

Пожилые (55+) 
Численность населения 

в возрасте  55 лет 
чел. 

Плотность 
населения 

Население на 1  чел./км
2
 

Силы Число сотрудников чел. 

Средства Количество единиц техники ед. 

Производный 

признак  

Производный атрибут:  
скорость распространения опасности * 

плотность населения 

условные 
ед. 

Производный 

признак  

Производный атрибут: 
численность детей *  
уровень безработицы 

условные 
ед. 

Производный 

признак  

Производный атрибут:  
численность пожилого населения * 

скорость распространения опасности 

условные 
ед. 

Производный 

признак  

Производный атрибут:  
плотность населения * 
уровень безработицы 

условные 
ед. 
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В рамках создания данных для модели М-1 осуществлено сведение исходных данных 
по коду ISO и по году события. Расчеты выполнялись по множеству стран, представленным 
в EM-DAT (в том числе Великобритания [826], Израиль [376], Канада [124], Германия [276], 
Испания [724], Россия [643], Польша [616], США [840], Франция [250], Италия [380], 
Япония [392], Китай [156] и др.). Полный перечень стран определяется составом 
базы EM-DAT. Размер ущерба ЧС приведен в базах EM-DAT, МЧС России, в данной работе 
значения приведены в тыс. руб. 

После объединения источников для каждой записи доступны: 
– регион события; 
– скорость распространения опасности; 
– размер ущерба; 
– год события; 
– уровень безработицы; 
– плотность населения; 
– общая численность населения; 
– численность пожилых (55+ лет); 
– численность детей (0–17 лет). 
Пример части данных для модели М-1 приведен в табл. 3. 

 
Таблица 3 

 

Пример части данных модели М-1 после объединения 
 

Регион  
(км/ч) 

Размер 

ущерба 

(тыс. руб.) 

Год 

Уровень 

безработицы 

(%) 

Плотность 

населения 

(чел./км2)  

Общая 

численность 

(чел.) 

Пожилые 

(55+) 

(чел.) 

Дети 

(0–17) 

(чел.) 

826 160 102678117 1995 8,5 239 58019030 9192285 11289043 

376 100 384414 2000 8,8 284 6289206 615248 1798202 

124 300 1817237 2000 6,8 3 30685730 3843678 5884966 

826 150 209681484 2000 5,4 242 58892514 9316458 11199610 

276 100 40783671 2001 7,4 231 82349924 13879868 12698043 

724 140 9788100 2001 10,6 81 40850412 6903599 5948800 

643 120 401478 2002 7,9 9 145306497 18637357 24127674 

826 200 6715 2002 5,1 244 59370479 9430544 11038890 

616 100 13351 2002 20,0 122 38230364 4849271 6921744 

840 290 294410880 2002 5,8 30 287625193 35522207 60563030 

 
Приведенные в табл. 3 строки (1995–2002 гг.) демонстрируют лишь фрагмент 

исторической выборки и не отражают полный временной диапазон исследования. 
Прогнозирование ущерба в рамках модели М-1 выполняется не посредством прямой 
временной экстраполяции стоимостных рядов, а путем построения статистической 

зависимости  между величиной ущерба и множеством предикторов (скорость 

распространения опасности, демографические и социально-экономические показатели). 
В машинном обучении такой подход соответствует принципу обучения на исторически 

наблюденных парах «фактор – отклик» и последующей аппроксимации функции отклика 
для новых векторов признаков. Прогноз в будущем формируется путем подстановки в модель 
актуальных или сценарно заданных значений признаков, что согласуется с методологией 
out-of-time валидации в машинном обучении: модель обучается на одном временном интервале 
и проверяется на более позднем, подтверждая способность обобщать выявленные 
закономерности на будущие периоды. 

Для учета нелинейных эффектов сформированы производные признаки: 
– усиление воздействия мощных явлений в густонаселенных районах (скорость 

распространения опасности, плотность населения); 
– социальная уязвимость семей при высокой безработице (численность детей, уровень 

безработицы); 
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– уязвимость региона с высокой долей пожилого населения (численность пожилого 
населения, скорость распространения опасности); 

– риски территорий с высокой плотностью населения и высоким уровнем безработицы 
(плотность населения, уровень безработицы). 

Пример 10 записей производных признаков приведены в табл. 4. 
 

Таблица 4 
 

Пример производных признаков 
 

Регион 
Производный 

признак  

Производный 

признак  

Производный 

признак  

Производный 

признак  

826 38 240 95956865,5 1470765600 2031,5 

376 28 400 15824177,6 61524800 2499,2 

124 900 40017768,8 1153103400 20,4 

826 36 300 60477894,0 1397468700 1306,8 

276 23 100 93965518,2 1387986800 1709,4 

724 11 340 63057280,0 966503860 858,6 

643 1 080 190608624,6 2236482840 71,1 

826 48 800 56298339,0 1886108800 1244,4 

616 12 200 138434880,0 484927100 2440,0 

840 8 700 351265574,0 10301440030 174,0 

 

В рамках предобработки было выполнено следующее: 
– удалены события с критически неполными записями; 
– события с ущербом более 108 тыс. руб. признан выбросом. 
– заполнение пропусков средним значением; 

– логарифмическая трансформация целевых переменных ; 

– нормализация признаков (StandardScaler). Применяется к массивам, используемым 
нейронной сетью; 

– разделение выборки для обучения (80 %) и тестирования (20 %). Показатель random 
state равен 42 для всех трех задач. 

Для моделей М-2 и М-3 сформирована отдельная таблица, объединяющая 
оперативную информацию МЧС России с демографическими данными Росстата. Пример 
произвольных 10 строк приведен в табл. 5. 
 

Таблица 5 
 

Пример произвольных 10 строк для моделей М-2 и М-3 
 

Год 
Размер 
ущер-

ба 
Область 

Уровень 
безрабо-

тицы 

Плот-
ность 
насе-
ления 

Общая 
числен-
ность 

Пожилые 
(55+) 

Дети 
(0–17) 

Силы 
Сред-
ства 

1998 400 Омская обл. 14,37 15,29 2 157 338 553 673 610 789 48 6 

1998 600 
Еврейская 

автономная обл. 
9,25 5,56 201 724 29 995 64 834 436 12 

1998 4 300 Челябинская обл. 16,99 41,46 3670174 731 874 958 221 60 12 

1998 26 000 
Республика 
Татарстан 

19,50 55,71 3 780 000 533 353 1 008 969 450 77 

1998 923 
Республика 
Мордовия 

16,7 35,79 935 000 211 736 234 601 318 50 

1999 3 100 
Оренбургская 

обл. 
15,36 17,93 2 218 000 319 454 605 274 92 20 

2000 751 Смоленская обл. 16,0 22,08 1 099 000 278 237 256 584 56 3 

2001 3 000 Томская обл. 20,2 3,35 1 054 000 172 588 234 337 58 10 

2001 300 Кемеровская обл. 20,5 30,74 2 943 000 649 014 612 026 90 50 

2001 9 660 
Краснодарский 

край 
21,03 68,0 5 133 000 1 306 676 1 101 910 62 19 
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Реальные данные были дополнены синтетическими для возможности обучения 
моделей ML. Эта структурированная выборка обеспечивает единообразный набор признаков 
для обучения моделей прогнозирования сил и средств, а также позволяет точно связывать 
величину ущерба с фактическими ресурсными затратами. 
 

Моделирование 
 

В табл. 6 указаны используемые алгоритмы. 
 

Таблица 6 
 

Используемые алгоритмы 
 

Алгоритм Ключевые параметры 

LightGBM 

n_estimators = 700, learning_rate = 0,05, max_depth = 4, 

feature_fraction = 0,8, random_state = 42, 

ранняя остановка 30 итераций 

CatBoost 
iterations = 600, depth = 4, learning_rate = 0,05, l2_leaf_reg = 3, 

verbose = 0, random_seed = 42, early_stopping_rounds = 30 

MLP 

три скрытых слоя 128-64-32, ReLU, BatchNorm, 

Dropout 0,30/0,20, max_iter = 150, learning_rate_init = 0,001, 

early_stopping = True, n_iter_no_change = 25, random_state = 42 

 

По результатам тестирования модели М-1 полученные данные приведены в табл. 7. 
 

Таблица 7 
 

Результаты модели М-1 
 

Модель 
MAE, тыс. 

руб.  

LightGBM 351 866 0,25 

CatBoost 351 520 0,34 

MLP 350 075 0,35 

 
По результатам тестирования модели М-2 полученные данные приведены в табл. 8. 
 

Таблица 8 
 

Результаты модели М-2 
 

Модель MAE, чел.  
LightGBM 111 0,02 

CatBoost 108 0,09 

MLP 32 0,12 

 

По результатам тестирования модели М-3 полученные данные приведены в табл. 9. 
 

Таблица 9 
 

Результаты модели М-3 
 

Модель MAE, ед.  
LightGBM 62 0,03 

CatBoost 41 0,08 

MLP 14 0,21 
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Для каждой из трех задач построены SHAP–диаграммы. Пример для модели М-2 
приведен на рис. 2. 

 

 
 

Рис. 2. SHAP–диаграмма модели М-2 

 
Диаграмма отображает, каким образом отдельные признаки влияют на прогнозное 

значение модели, описание к диаграмме приведено в табл. 10. 
 

Таблица 10 

 

Интерпретация SHAP–диаграммы 
 

Элемент Описание 

Горизонтальная 

ось 

Величина вклада признака в отклонение индивидуального прогноза 

от среднего значения модели. 

Если точка правее нуля, то признак повышает величину прогнозируемого 

значения. 

Если точка левее нуля, то признак уменьшает величину прогнозируемого 

значения 

Вертикальное 

распределение 

точек 

Плотность и разброс значений SHAP для данного признака по всей выборке 

наблюдений. Чем шире «полоса», тем сильнее варьируется вклад признака 

в прогноз между различными объектами выборки 

Цвет точки 

Условно кодирует исходное значение признака: 

– синий – низкое значение; 

– красный – высокое значение. 

Градация оттенков демонстрирует, как изменение признака 

от минимальных к максимальным уровням соотносится с направлением 

и величиной его вклада в прогноз модели: смещение красных точек вправо 

относительно синих указывает на рост прогнозируемого значения 

при увеличении признака, а смещение влево – на снижение 

 
На всех графиках фиксируется единый набор признаков-лидеров, выводы по диаграмме 

для модели М-2 приведены в табл. 11. 
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Таблица 11 

 

Выводы SHAP–диаграммы модели М-2 
 

Признак Наблюдаемое распределение Вывод о влиянии 

Размер ущерба 

Красные точки (высокий 

ущерб) сфокусированы справа, 

синие – слева 

Чем больше прогнозируемый ущерб, тем 

больше требуемая численность сил; 

зависимость почти линейная 

Производный 

признак  

При высоких значениях 

(красный) точки смещены 

вправо, низкие (синий) – 

ближе к нулю 

Сильная ЧС в регионе с большой долей 

пожилых заметно повышает потребность 

в спасателях 

Производный 

признак  

Красные точки сдвинуты 

вправо, синие – слегка 

отрицательны 

Мощное событие на густонаселенной 

территории резко увеличивает объем сил; 

при малой плотности влияние снижается 

Плотность 

населения 

Красные точки слева от нуля, 

синие – ближе к нулю 

или чуть правее 

Самостоятельное влияние плотности 

населения выражено слабее, чем ее 

взаимодействие с интенсивностью события 

(показатель ) 

Пожилые 

(55+) 

Красные точки левее, 

синие правее 

Прямое влияние доли пожилых выражено 

умеренно; ключевое воздействие 

проявляется через взаимодействие 

с интенсивностью (показатель ) 

 
Ключевые выводы: 
– прогнозируемый ущерб остается главным детерминантом: при его увеличении модель 

практически линейно наращивает оценку потребности в спасателях; 

– комбинированные демографические предикторы ( , ) усиливают базовый эффект 

ущерба, подчеркивая критичность социально-уязвимых и густонаселенных зон; 
– самостоятельное влияние плотности населения и доли пожилого населения выражено 

умеренно: в ряде наблюдений их вклад в прогноз модели принимает отрицательные значения, 
смещая оценку потребности вниз. Существенный эффект этих факторов проявляется 
преимущественно через их взаимодействие с интенсивностью события. При этом 
положительный вклад становится статистически значимым, когда значения признаков относятся 
к верхнему квартилю распределения. 

Таким образом, модель М-2 согласованно учитывает прогнозируемый ущерб 
и демографические факторы, формируя оценку потребности в силах. Наибольший рост 
прогнозируемой потребности фиксируется при крупных катастрофах в густонаселенных зонах. 
При этом высокая доля пожилого населения и значительная плотность населения 
при рассмотрении в отдельности оказывают ограниченное влияние и не усиливают 
прогнозируемую потребность, однако их эффект существенно возрастает во взаимодействии 
с экстремальными характеристиками события. 

Последовательное сравнение трех алгоритмов на едином наборе признаков 
и при идентичной схеме кросс-валидации показало, что глубокая полносвязная нейронная 
сеть обеспечивает наилучший баланс для текущего набора данных: 

– для всех подзадач зафиксированы минимальные значения средней абсолютной ошибки; 
– коэффициент детерминации в лог-шкале превосходит показатели бустинговых 

моделей; 
– SHAP-анализ выявил устойчивую группу признаков-драйверов. 
Таким образом, предложенный подход (лог-трансформация целей, расширенный 

набор взаимодействующих признаков, каскад моделей) обеспечивает надежный прогноз 
ущерба и ресурсных потребностей (численности сил и средств) и предоставляет 
управляемую интерпретацию факторов риска, что создает прочную основу для дальнейшей 
интеграции в ведомственные системы планирования и управления силами и средствами. 
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Заключение 
 

Настоящее исследование представило единый научно-методический аппарат, 

объединяющий три взаимосвязанные ML-модели (М-1 – прогноз ущерба, М-2 – расчет 

численности сил, М-3 – определение объема средств) для поддержки решений в области 

ресурсного обеспечения мероприятий по ликвидации ЧС. Предложенный аппарат 

ориентирован на поддержку краткосрочного планирования, обеспечивая оперативную 

адаптацию объемов сил и средств к прогнозируемым угрозам. По итогам экспериментального 

сравнения LightGBM, CatBoost и полносвязной нейронной сети получены следующие 

ключевые результаты: 

1. Точность прогнозирования прямого ущерба (М-1). Лучший результат показала MLP – 

MAE = 350 075 тыс. руб.,  = 0,35. 

2. Прогноз потребности в личном составе (М-2). MLP имеет наименьшую среднюю 

абсолютную ошибку (32 чел.) и наибольший  (0,12). Модель корректно отражает 

взаимодействие ущерба с демографическими факторами, что имеет ключевое значение 

для оперативного распределения спасательных ресурсов. 

3. Прогноз потребности в технических средствах (М-3). Для прогнозирования объемов 

средств нейросеть достигла MAE = 14 ед.,  = 0,21. 

4. SHAP-анализ подтвердил логическую структуру признаков-драйверов. Рост ущерба 

сопровождается ростом сил и средств, сочетание высокой плотности населения 

и интенсивной ЧС значительно усиливает ущерб, доля пожилых и уровень безработицы вносят 

дополнительный вклад в прогнозирование, отражая социальную уязвимость. 

Научная новизна и перспективы: 

– комплексный каскад ML-моделей, решающий задачи по краткосрочному 

прогнозированию ущерба от ЧС и обоснованию объемов сил и средств; 

– расширенный признак-набор, интегрирующий природные и демографические 

параметры без упрощения; 

– благодаря унифицированной структуре данных модели могут быть корректно 

применены к различным регионам Российской Федерации. 

Перспективным направлением является использование данных с повышенным 

пространственным разрешением, внедрение графовых нейронных сетей для уточненного 

моделирования ущерба и распространение методики на техногенные ЧС. 

 

Список источников 
1. Глобальное изменение климата и его последствия / Л.В. Бондаренко [и др.] // Вестник 

РЭА им. Г.В. Плеханова. 2018. № 2 (98). URL: https://cyberleninka.ru/article/n/globalnoe-izmenenie-

klimata-i-ego-posledstviya (дата обращения: 11.06.2025). 

2. A Comprehensive Review of Machine Learning Approaches for Flood Depth Estimation / 

B. Liu [et al.] // Int J Disaster Risk Sci. 2025. DOI: 10.1007/s13753-025-00639-0. 

3. Development of Combined Heavy Rain Damage Prediction Models with Machine 

Learning / C. Choi [et al.] // Water. 2019. № 11. P. 2516. DOI: 10.3390/w11122516. 

4. Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: 

Flood Deaths and Property Damage across the USA / B. Tellman [et al.] // Sustainability. 2020. 

№ 12. P. 6006. DOI: 10.3390/su12156006 (дата обращения: 11.06.2025). 

5. Алехин М.Ю., Янченко А.Ю., Крымский В.В. О прогнозировании экономического 

ущерба от чрезвычайных ситуаций // Научно-аналитический журнал «Вестник Санкт-

Петербургского университета Государственной противопожарной службы МЧС России». 

2012. № 2. С. 84–88. URL: https://cyberleninka.ru/article/n/o-prognozirovanii-ekonomicheskogo-

uscherba-ot-chrezvychaynyh-situatsiy (дата обращения: 11.06.2025). 

6. Рыбаков А.В., Постернак Е.В. Анализ проблемной ситуации в области обоснования 

объемов инженерно-технических мероприятий при прогнозировании ущерба от природных 



Проблемы управления рисками в техносфере. № 4 (76)–2025                                                      http://journals.igps.ru 

20 
Снижение рисков и ликвидация последствий чрезвычайных ситуаций. Обеспечение безопасности при ЧС 

 

чрезвычайных ситуаций с учетом антропогенных факторов // Научные и образовательные 

проблемы гражданской защиты. 2024. № 4 (63). С. 72–83. EDN BJANZK. 

7. Machine learning application to disaster damage repair cost modelling of residential 

buildings / N. Wanigarathna [et al.] // Construction Management and Economics. 2024. № 43 (4). 

P. 302–322. DOI: 10.1080/01446193.2024.2419413 (дата обращения: 11.06.2025). 

8.  Хадзегов А.С., Крейтор В.П. Методы прогнозирования природных и техногенных 

опасностей, рисков возникновения чрезвычайных ситуаций, динамики их последствий, 

оценке ущерба // Актуальные исследования. 2022. № 17 (96). С. 11–15. URL: 

https://apni.ru/article/4038-metodi-prognozirovaniya-prirodnikh-i-tekhnog (дата обращения: 

11.06.2025). 

9. Caunhye A.M., Nie X., Pokharel S. Optimization models in emergency logistics: 

A literature review // Socio-economic planning sciences. 2012. Т. 46. № 1. С. 4–13. 

DOI: 10.1016/j.seps.2011.04.004 (дата обращения: 11.06.2025). 

10. Рыбаков А.В., Постернак Е.В. Математическая модель обоснования объемов 

инженерно-технических мероприятий для минимизации ущерба от природных чрезвычайных 

ситуаций с учетом антропогенных факторов // Проблемы управления рисками в техносфере. 

2025. № 1 (73). С. 102–117. DOI: 10.61260/1998-8990-2025-1-102-117. EDN CCNPUD. 

11. Machine Learning in Disaster Management: Recent Developments in Methods and 

Applications / V. Linardos [et al.] // Mach. Learn. Knowl. Extr. 2022. № 4. P. 446–473. DOI: 

10.3390/make4020020 (дата обращения: 11.06.2025). 

12. Никульчев Е.В., Червяков А.А. Построение робастных интервальных моделей 

прогнозирования динамики структурно-сложной системы // Труды НГТУ им. Р.Е. Алексеева. 

2023. № 1 (140). С. 33–41. URL: https://cyberleninka.ru/article/n/postroenie-robastnyh-

intervalnyh-modeley-prognozirovaniya-dinamiki-strukturno-slozhnoy-sistemy (дата обращения: 

11.06.2025). 

13. Шаптала В.Г., Радоуцкий В.Ю., Шаптала В.В. Применение нейросетевых 

технологий для прогнозирования чрезвычайных ситуаций // Вестник БГТУ им. В.Г. Шухова. 

2011. № 2. С. 152–154. 

14. Харин Ю.С. Устойчивость в статистическом прогнозировании временных рядов // 

Прикладная эконометрика. 2006. № 1. С. 82–92. URL: https://cyberleninka.ru/article/n/ustoychivost-

v-statisticheskom-prognozirovanii-vremennyh-ryadov (дата обращения: 11.06.2025). 

15. О выборе метода динамического нормирования энергоресурсов 

нефтеперерабатывающих производств / В.Р. Ведрученко [и др.] // Омский научный вестник. 

Сер.: Авиационно-ракетное и энергетическое машиностроение. 2024. № 2. С. 5–12. URL: 

https://cyberleninka.ru/article/n/o-vybore-metoda-dinamicheskogo-normirovaniya-energoresursov-

neftepererabatyvayuschih-proizvodstv (дата обращения: 11.06.2025). 

16. Анализ прогнозных свойств структурных моделей и моделей с включением 

результатов опросов предприятий / В. Носко [и др.] // Научные труды Фонда «Институт 

экономической политики им. Е.Т. Гайдара. 2003. № 64. URL: 

https://cyberleninka.ru/article/n/analiz-prognoznyh-svoystv-strukturnyh-modeley-i-modeley-s-

vklyucheniem-rezultatov-oprosov-predpriyatiy (дата обращения: 11.06.2025). 

17. Лебедева М.Р., Лобашов А.О., Семченков С.С. Методы анализа данных 

и прогнозирования аварийности на примере города Минска // Вестник Полоцкого 

государственного университета. Сер. B.: Промышленность. Прикладные науки. 2025. № 1. 

С. 70–76. URL: https://cyberleninka.ru/article/n/metody-analiza-dannyh-i-prognozirovaniya-

avariynosti-na-primere-goroda-minska (дата обращения: 11.06.2025). 

 

References 

1. Global'noe izmenenie klimata i ego posledstviya / L.V. Bondarenko [i dr.] // Vestnik REA 

im. G.V. Plekhanova. 2018. № 2 (98). URL: https://cyberleninka.ru/article/n/globalnoe-izmenenie-

klimata-i-ego-posledstviya (data obrashcheniya: 11.06.2025). 

https://apni.ru/article/4038-metodi-prognozirovaniya-prirodnikh-i-tekhnog
https://doi.org/10.1016/j.seps.2011.04.004
https://doi.org/10.3390/make4020020
https://doi.org/10.3390/make4020020


Problems of risk management in the technosphere. № 4 (76)–2025                                                       http://journals.igps.ru 

21 
Risks reduction and elimination of consequences of emergencies. Safety ensuring at emergency situations 

 

2. A Comprehensive Review of Machine Learning Approaches for Flood Depth Estimation / 

B. Liu [et al.] // Int J Disaster Risk Sci. 2025. DOI: 10.1007/s13753-025-00639-0. 

3. Development of Combined Heavy Rain Damage Prediction Models with Machine Learning / 

C. Choi [et al.] // Water. 2019. № 11. P. 2516. DOI: 10.3390/w11122516. 

4. Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood 

Deaths and Property Damage across the USA / B. Tellman [et al.] // Sustainability. 2020. № 12. 

P. 6006. DOI: 10.3390/su12156006 (data obrashcheniya: 11.06.2025). 

5. Alekhin M.Yu., Yanchenko A.Yu., Krymskij V.V. O prognozirovanii ekonomicheskogo 

ushcherba ot chrezvychajnyh situacij // Nauchno-analiticheskij zhurnal «Vestnik Sankt-Peterburgskogo 

universiteta Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii». 2012. № 2. S. 84–88. URL: 

https://cyberleninka.ru/article/n/o-prognozirovanii-ekonomicheskogo-uscherba-ot-chrezvychaynyh-

situatsiy (data obrashcheniya: 11.06.2025). 

6. Rybakov A.V., Posternak E.V. Analiz problemnoj situacii v oblasti obosnovaniya ob"emov 

inzhenerno-tekhnicheskih meropriyatij pri prognozirovanii ushcherba ot prirodnyh chrezvychajnyh 

situacij s uchetom antropogennyh faktorov // Nauchnye i obrazovatel'nye problemy grazhdanskoj 

zashchity. 2024. № 4 (63). S. 72–83. EDN BJANZK. 

7. Machine learning application to disaster damage repair cost modelling of residential 

buildings / N. Wanigarathna [et al.] // Construction Management and Economics. 2024. № 43 (4). 

P. 302–322. DOI: 10.1080/01446193.2024.2419413 (data obrashcheniya: 11.06.2025). 

8. Hadzegov A.S., Krejtor V.P. Metody prognozirovaniya prirodnyh i tekhnogennyh opasnostej, 

riskov vozniknoveniya chrezvychajnyh situacij, dinamiki ih posledstvij, ocenke ushcherba // Aktual'nye 

issledovaniya. 2022. № 17 (96). S. 11–15. URL: https://apni.ru/article/4038-metodi-prognozirovaniya-

prirodnikh-i-tekhnog (data obrashcheniya: 11.06.2025). 

9. Caunhye A.M., Nie X., Pokharel S. Optimization models in emergency logistics: 

A literature review // Socio-economic planning sciences. 2012. T. 46. № 1. S. 4–13. 

DOI: 10.1016/j.seps.2011.04.004 (data obrashcheniya: 11.06.2025). 

10. Rybakov A.V., Posternak E.V. Matematicheskaya model' obosnovaniya ob"emov 

inzhenerno-tekhnicheskih meropriyatij dlya minimizacii ushcherba ot prirodnyh chrezvychajnyh situacij 

s uchetom antropogennyh faktorov // Problemy upravleniya riskami v tekhnosfere. 2025. № 1 (73). 

S. 102–117. DOI: 10.61260/1998-8990-2025-1-102-117. EDN CCNPUD. 

11. Machine Learning in Disaster Management: Recent Developments in Methods and 

Applications / V. Linardos [et al.] // Mach. Learn. Knowl. Extr. 2022. № 4. P. 446–473. 

DOI: 10.3390/make4020020 (data obrashcheniya: 11.06.2025). 

12. Nikul'chev E.V., Chervyakov A.A. Postroenie robastnyh interval'nyh modelej 

prognozirovaniya dinamiki strukturno-slozhnoj sistemy // Trudy NGTU im. R.E. Alekseeva. 2023. 

№ 1 (140). S. 33–41. URL: https://cyberleninka.ru/article/n/postroenie-robastnyh-intervalnyh-

modeley-prognozirovaniya-dinamiki-strukturno-slozhnoy-sistemy (data obrashcheniya: 11.06.2025). 

13. Shaptala V.G., Radouckij V.Yu., Shaptala V.V. Primenenie nejrosetevyh tekhnologij dlya 

prognozirovaniya chrezvychajnyh situacij // Vestnik BGTU im. V.G. SHuhova. 2011. № 2. S. 152–154. 

14. Harin Yu.S. Ustojchivost' v statisticheskom prognozirovanii vremennyh ryadov // 

Prikladnaya ekonometrika. 2006. № 1. S. 82–92. URL: https://cyberleninka.ru/article/n/ustoychivost-v-

statisticheskom-prognozirovanii-vremennyh-ryadov (data obrashcheniya: 11.06.2025). 

15. O vybore metoda dinamicheskogo normirovaniya energoresursov 

neftepererabatyvayushchih proizvodstv / V.R. Vedruchenko [i dr.] // Omskij nauchnyj vestnik. 

Ser.: Aviacionno-raketnoe i energeticheskoe mashinostroenie. 2024. № 2. S. 5–12. URL: 

https://cyberleninka.ru/article/n/o-vybore-metoda-dinamicheskogo-normirovaniya-energoresursov-

neftepererabatyvayuschih-proizvodstv (data obrashcheniya: 11.06.2025). 

16. Analiz prognoznyh svojstv strukturnyh modelej i modelej s vklyucheniem rezul'tatov 

oprosov predpriyatij / V. Nosko [i dr.] // Nauchnye trudy Fonda «Institut ekonomicheskoj politiki 

im. E.T. Gajdara. 2003. № 64. URL: https://cyberleninka.ru/article/n/analiz-prognoznyh-svoystv-



Проблемы управления рисками в техносфере. № 4 (76)–2025                                                      http://journals.igps.ru 

22 
Снижение рисков и ликвидация последствий чрезвычайных ситуаций. Обеспечение безопасности при ЧС 

 

strukturnyh-modeley-i-modeley-s-vklyucheniem-rezultatov-oprosov-predpriyatiy (data obrashcheniya: 

11.06.2025). 

17. Lebedeva M.R., Lobashov A.O., Semchenkov S.S. Metody analiza dannyh 

i prognozirovaniya avarijnosti na primere goroda Minska // Vestnik Polockogo gosudarstvennogo 

universiteta. Ser. B.: Promyshlennost'. Prikladnye nauki. 2025. № 1. S. 70–76. URL: 

https://cyberleninka.ru/article/n/metody-analiza-dannyh-i-prognozirovaniya-avariynosti-na-primere-

goroda-minska (data obrashcheniya: 11.06.2025). 

 
Информация о статье: 
Статья поступила в редакцию: 12.08.2025; одобрена после рецензирования: 29.09.2025; 
принята к публикации: 10.10.2025 
 

The information about article: 
The article was submitted to the editorial office: 12.08.2025; approved after review: 29.09.2025; 
accepted for publication: 10.10.2025 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Информация об авторах 

Рыбаков Анатолий Валерьевич, профессор кафедры высшей математики Академии гражданской 

защиты МЧС России (141435, Московская обл., г. Химки, мкр. Новогорск, ул. Соколовская, стр. 1А), 

доктор технических наук, профессор, e-mail: a.rybakov@agz.50.mchs.gov.ru, https://orcid.org/000-0002-

4037-1231, SPIN-код: 8654-3788 

Постернак Евгений Валерьевич, аспирант факультета экологии и природоохранной деятельности 

Российского государственного социального университета (129226, Москва, ул. Вильгельма Пика, д. 4, 

стр. 1), e-mail: kripsy93@yandex.ru, https://orcid.org/0009-0003-9732-4449, SPIN-код: 7581-4305 

 
Information about the authors: 

Rybakov Anatoly V., professor of the department of higher mathematics at the academy of civil protection 

of EMERCOM of Russia (141435, Moscow region, Khimki, md. Novogorsk, Sokolovskaya str., 1A), doctor 

of technical sciences, professor, e-mail: a.rybakov@agz.50.mchs.gov.ru, https://orcid.org/000-0002-4037-

1231, SPIN: 8654-3788 

Posternak Evgeny V., postgraduate student at the faculty of ecology and environmental protection of the Russian 

state social university (129226, Moscow, Wilhelma Peak str., 4, building 1), e-mail: kripsy93@yandex.ru, 

https://orcid.org/0009-0003-9732-4449, SPIN: 7581-4305 

 

https://orcid.org/0009-0003-9732-4449
https://orcid.org/0009-0003-9732-4449

