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Аннотация. Установлено, что оценка состояния бетонных конструкций является важнейшим 

аспектом современной строительной инженерии, а диагностика бетонных конструкций на месте 
пожара необходима для принятия обоснованных решений о возможности ведения спасательных 
и неотложных аварийно-восстановительных работ, организации следственных действий и других 
мероприятий. Констатировано, что для того, чтобы устранить эти ограничения, более 
распространенной альтернативной стратегией является сочетание прямых испытаний на сжатие 
с передовыми методами неразрушающего контроля, такой подход позволяет более эффективно 
и точно оценивать качество конструкционного материала без необходимости в обширном отборе 
проб и проведении разрушающих испытаний. Проанализированы основные методы неразрушающего 
контроля: акустические, оптические, электромагнитные, тепловые и рентгенографические. 
Поставлена задача – выработка объективных критериев выбора методов неразрушающего контроля 
для оценки состояния бетонных конструкций после пожара. 
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Введение 

 
Оценка состояния бетонных конструкций является важнейшим аспектом современной 

строительной инженерии. Диагностика бетонных конструкций на месте пожара необходима 
для принятия обоснованных решений о возможности ведения спасательных и неотложных 
аварийно-восстановительных работ, организации следственных действий и других 
мероприятий. Традиционно качество бетона в гражданских сооружениях оценивается  
с использованием образцов бетонных цилиндров извлекаемых из конструкций, которые 
проверяются с помощью простых испытаний на сжатие, описанных в стандарте ASTM C39 [1]. 

Однако применение этого метода требует значительного количества образцов 
и последующего прямого измерения с помощью разрушающих испытаний, что может быть 
длительным, дорогостоящим и трудоемким процессом. 

Чтобы устранить эти ограничения, более распространенной альтернативной 
стратегией является сочетание прямых испытаний на сжатие с передовыми методами 
неразрушающего контроля (англ. Non-Destructive Testing – NDT). Такой подход позволяет 
более эффективно и точно оценивать качество конструкционного материала без необходимости 
в обширном отборе проб и проведении разрушающих испытаний. 
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Неразрушающий контроль (NDT) относится к методам, используемым для 
исследования объектов, материалов или систем без ущерба для их использования в будущем. 
Это означает проверку или измерение без причинения какого-либо вреда [2]. Испытания, 
доступные для конструкций, варьируются от полностью неразрушающих, которые 
не наносят ущерба бетону, до тех, которые слегка повреждают поверхность, и частично 
разрушающих испытаний, таких, как испытания стержня и испытания на выдергивание, 
которые впоследствии требуют ремонта поверхности.  

Методы неразрушающего контроля служат двум основным целям при диагностике 
бетонных конструкций [3, 4]:  

– оценке механических свойств, прежде всего прочности и общего состояния 
конструкций [5–7];  

– оценке безопасности и показателей стабильности, включая проверку таких факторов, 
как пористость, глубина карбонизации, содержание воды, наличие неоднородностей  
и слабые места [8–10].  

Существуют различные методы неразрушающего контроля, основанные на различных 
принципах, которые можно разделить на методы: акустические, оптические, 
электромагнитные, тепловые и рентгенографические [11].  

Согласно Форду и др. [12], при проведении неразрушающего контроля необходимо 
учитывать пять основных факторов: требуемую глубину проникновения, необходимое 
вертикальное и поперечное разрешение, контраст физических свойств объекта и его 
окружения, отношение сигнал/шум для этих физических свойств, а также наличие 
информации о технологических свойствах решенного объекта.  

Выбор метода неразрушающего контроля зависит от нескольких факторов, включая 
требуемые параметры конструкции, осуществимость процедуры тестирования и наличие 
испытательного оборудования. Таким образом, методы неразрушающего контроля являются 
универсальными инструментами, используемыми для оценки целостности как новых,  
так и существующих и поврежденных конструкций. 

Методы неразрушающего контроля дают ценную информацию, их точность  
и согласованность могут существенно различаться. На результаты могут влиять такие 
факторы, как качество оборудования, квалификация оператора и конкретные условия 
испытания материала конструкции. 

Однако точность измерений при оценке состояния бетона может быть достигнута 
различными способами. Во-первых, необходимо убедиться, что оборудование для 
неразрушающего контроля должным образом откалибровано с использованием 
апробированных традиционных методов, чтобы свести к минимуму систематические ошибки, 
и сравнить методы неразрушающего контроля с методами разрушающего контроля, такими 
как отбор проб керна, чтобы установить корреляцию между результатами неразрушающего 
контроля и фактическими свойствами бетона [13, 14].  

Другим способом достижения точности является сочетание нескольких методов 
неразрушающего контроля, таких как методы SonReb, сочетающие измерение скорости 
ультразвукового импульса с измерением прочности методом упругого отскока, и которые 
могут повысить точность за счет использования сильных сторон каждого метода [15–18]. 
Статистический анализ собранных данных, включая вычисление среднего значения, 
стандартного отклонения и доверительных интервалов, помогает достичь необходимой 
надежности и точности измерений. Кроме того, этому способствует использование 
искусственного интеллекта и алгоритмов машинного обучения. 

Цель данного обзора – дать всестороннее представление о различных методах, их 
принципах и способах применения, помочь выбрать наиболее подходящие методы путем 
определения сильных сторон и ограничений каждого метода для точной оценки новых, 
существующих и поврежденных в ходе пожара строительных конструкций из бетона. 
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Обзор литературных источников 
 

В современной литературе описаны результаты многочисленных исследований 
свойств бетона с использованием методов механического неразрушающего контроля (NDT), 
которые подтвердили их эффективность в оценке свойств материала. Многие исследования, 
такие как работы Шариати и др. [19], Санчес и Тарранза [20], а также Каземи и др. [21] 
продемонстрировали эффективность испытания по методу Шмидта для оценки прочности 
на сжатие. Эти исследования подтверждают надежность результатов испытаний и простоту 
их использования в различных ситуациях для бетонных конструкций. 

В работах Бренчича и др. [22, 23] и Баллы и др. [24, 25] было подробно рассмотрено 
применение метода Шмидта для оценки механических свойств конструкций, выполненных 
в виде каменной кладки. Эти исследования дают ценную информацию о механических 
свойствах подобных конструкций. 

К другим измерительным процедурам, обеспечивающим целостность и долговечность 
бетонных конструкций, относятся испытания на растяжение и распиловку. Интересны 
результаты исследований, проведенных Фазли и др. [26], Рамосом и др. [27], а также 
Бональдо и др. [28], продемонстрировавшие эффективность испытаний на отрыв для оценки 
прочности межфазного соединения между бетоном и фибробетоном. 

Результаты исследования Садовски и др. [29] подтвердили надежность этого метода 
для оценки механизма разрушения поверхности раздела ремонтного раствора и каменной 
кладки. Аналогичным образом, результаты работы Маццука и др. [30] дополнительно 
подтверждают надежность этого метода, характеризуя механические свойства 
армированного сталью раствора для усиления существующих каменных и бетонных 
конструкций. 

Серьезное внимание исследователей было сосредоточено на применении методов 
неразрушающего контроля на основе применения электромагнитных колебаний для оценки 
бетонных конструкций. Например, Солла и др. [31], Ломбарди и др. [32] и Мартини и др. [33] 
подчеркнули эффективность использования георадара (англ. Ground Penetrating Radar – GPR) 
для определения характеристик каменной кладки и сбора информации о ее механических 
свойствах. Алани и др. в [34] обсуждают использование георадара в двух тематических 
исследованиях. Например, мост Форт-Роуд в Шотландии, который заподозрен 
в конструктивных дефектах, таких как трещины в арматуре и проникновение влаги 
на покрытие моста. Один из английских автодорожных мостов был исследован на наличие 
дефектов, таких как структурные трещины, в конструкции настила, которые влияют 
на поведение верхней и нижней арматуры, расположенной поперек моста. Бебен и др. [35] 
подтвердили его надежность, исследую железобетонную балку виадука в части определения 
геометрических характеристик балок, расстояния между арматурными стержнями и глубины 
их расположения.  

Распространение волн или отражение рентгеновских лучей через бетонные или 
каменные конструкции могут быть использованы для диагностики структурных 
повреждений, полученных в результате пожара. Многие исследования состояния бетонных 
конструкций и каменной кладки, в которых для оценки состояния конструкций 
использовалась рентгенография, позволили подтвердить эффективность применения 
подобных методов. Так, работа Камаль и Булфиза [36] продемонстрировала эффективность 
рентгеновского картирования изображений с обратным рассеянием электронов (BEI)  
и энергодисперсионной спектроскопии (EDS), при этом был установлено, показан полимер, 
армированный стекловолокном, когда арматура из стекловолокна пропускает воду, 
одновременно блокируя попадание щелочей.  

Чжан и его соавторы в [37] используют передовую неразрушающую технологию, 
называемую нейтронной рентгенографией, для визуализации диффузии, влаги в бетоне  
и других композитах на основе цемента, а также для измерения распределения влажности  
в зависимости от времени. Де Бир и др. [38] подтвердили надежность результатов 
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нейтронной рентгенографии для получения количественных данных о пористости  
и сорбционной способности бетона в лабораторных или обычных измерениях, в то время как 
Пей и др. [39] провели экспериментальное моделирование для использования 
высокоэнергетической рентгеновской системы на месте для улучшения изображения за счет 
уменьшения шумовых характеристик для проверки состояния железобетонных конструкций 
после пожара. Кроме того, Мовафеги и др. в [40] показали, что интегрированная 
рентгенография является доступным методом минимизации затрат для осмотра  
и мониторинга бетонных конструкций за счет улучшения визуализации арматурных 
стержней, фитингов или натяжных тросов и дефектов бетона. 

На протяжении многих лет в многочисленных исследованиях применялся 
ультразвуковой контроль для исследования состояния бетонных и каменных конструкций 
путем измерения продолжительности прохождения продольных волн на заданном 
расстоянии. Например, в работах Богас и др. [41] и Мата и др. [13] подчеркнута 
эффективность ультразвукового импульсного контроля скорости при оценке прочности 
бетона на сжатие. Янг и др. [14] дополнительно подтверждают надежность этого метода  
в различных сценариях послеаварийного исследования.  

Хуан и др. [42] исследовали и подмечают преимущества сочетания нескольких 
методов неразрушающего контроля, такие как UPV (управление просмотром базы данных)  
в сочетании с испытанием по методу Шмидта, которые позволяют повысить точность оценки 
прочности при сжатии. Кроме того, Кевалрамани и др. и Тртник с соавторами интегрировали 
методы UPV с искусственными нейронными сетями для повышения точности 
прогнозирования прочности бетона на сжатие.  

Кржеминь и др. [43] установили взаимосвязь между эхо-сигналами от удара  
и бетоном, подвергнутым воздействию высокой температуры, для изучения механических 
свойств бетона после пожара. Аналогичным образом, Epasto и др. [44] исследовали 
разрушение бетона, временную локализацию и энергетический состав гармонических 
составляющих в поврежденном огнем бетоне, используя методы эхо-сигнала от удара  
и вейвлет-частотно-временной методологии. Качановым и др. [45] исследованы компактные 
бетонные строительные конструкции с использованием метода мультипликативного  
эхо-воздействия для определения прочности бетона во время эксплуатации строительных 
конструкций. Наконец, исследованием Чжана и соавт. [37] был отмечен прогресс  
в интеграции методов эхо-анализа с передовыми методами машинного обучения для 
выполнения комплексного анализа и распознавания образов сигналов для полной оценки 
состояния (т.е. обнаружения дефектов, диагностики дефектов, определения размеров  
и местоположения дефектов, как следствия воздействия продуктов горения). 

За прошедшее время было проведено множество исследований, посвященных 
применению оптического неразрушающего контроля (NDT), методов оценки бетонных  
и каменных конструкций. Янг и др. [46] продемонстрировали полезность технологии  
3D-лазерного сканирования при создании и калибровке конечно-элементной модели для 
оценки состояния бетонных конструкций. Лоу и др. [47] и Олсен с соавторами [48] 
использовали наземное лазерное сканирование для оценки структуры бетона. В то время как 
другие исследования фокусируются на визуальном контроле, например, Stewart et al. [49] 
исследовали возможности визуального контроля, чтобы подтвердить его надежность для 
оценки безопасности поврежденных в ходе пожара железобетонных конструкций.  

 
Заключение 

 
Исследование содержания актуальных литературных источников позволило выявить 

из числа достаточно апробированных наиболее перспективные методы неразрушающего 
контроля состояния строительных конструкций после пожара: 

– интегрирование методов визуального контроля с роботизированными системами, 
поддерживающими машинное обучение, для автоматизации визуального контроля, что 
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важно как для контроля состояния строительных конструкций, так и для их последующего 
восстановления; 

– многие исследователи подтвердили эффективность использования инфракрасной 
термографии, которая является еще одним оптическим неразрушающим методом, 
использующим спектральный анализ для оценки ухудшения состояния бетонных 
конструкций после пожара; 

– для оценки скрытых дефектов на различных глубинах и в локальных областях 
конструкции возможно нагревание подозреваемой области лампами с последующим 
спектральным анализом дефекта с использованием акустических сигналов. 

Несколько подходов неразрушающего контроля предполагают использование 
электрических характеристик материала конструкции для оценки их состояния: 
– измерения электрического сопротивления для параметров обнаружения и локализации 
трещин и сколов в бетоне; 

– измерения электрического сопротивления для оценки количественной оценки 
ориентации волокон в стальном фибробетоне (SFRC); 

– учет корреляции между прочностными свойствами бетона и поверхностным 
электрическим сопротивлением на основе технологии UPV.  

Содержание международных стандартов, норм и руководств, а также критерии 
оценки неразрушающего контроля для бетонных конструкций могут быть темой отдельного 
изучения проблемы выбора методов неразрушающего контроля бетонных конструкций, 
подвергающихся воздействию продуктов горения в ходе пожара. 
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