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Аннотация. Рассматривается актуальная проблема обеспечения пожарной 
безопасности на опасных производственных объектах нефтегазоперерабатывающей 
промышленности. В контексте реализации Стратегии развития беспилотной авиации 
Российской Федерации на период до 2030 г. обосновывается перспективность использования 
тяжелых беспилотных воздушных судов для тушения пожаров на труднодоступных 
высотных технологических установках. Проведен анализ статистики аварийности  
и предложена новая инженерная методика расчета параметров систем пожаротушения  
с применением беспилотных воздушных судов.  

Ключевой особенностью разработанного подхода является системная интеграция трех 
групп параметров: геометрических характеристик объекта защиты, гидравлических потерь 
давления в вертикальных рукавных линиях и массогабаритных ограничений беспилотных 
воздушных судов. В работе подробно описан пошаговый алгоритм, включающий проверку 
условий запаса грузоподъёмности и допустимого рабочего давления в системе. 
Предложенная методика позволяет автоматизировать процесс подбора оборудования, 
отсеивать технически нереализуемые варианты конфигурации и минимизировать количество 
беспилотных воздушных судов, необходимое для обеспечения нормативной интенсивности 
подачи огнетушащих веществ. Полученные результаты формируют теоретическую  
и практическую основу для проектирования и внедрения мобильных роботизированных 
комплексов пожаротушения нового поколения. 
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Abstract. The article addresses the urgent problem of ensuring fire safety at hazardous 
industrial facilities of the oil and gas refining industry. In the context of the implementation  
of the Strategy for the Development of Unmanned Aviation of the Russian Federation until 2030, 
the prospects of using heavy unmanned aerial vehicles for extinguishing fires on hard-to-reach 
high-altitude technological installations are substantiated. The authors analyzed accident statistics 
and proposed a new engineering methodology for calculating the parameters of fire extinguishing 
systems using heavy unmanned aerial vehicles. 

A key feature of the developed approach is the system integration of three groups  
of parameters: the geometric characteristics of the protected object, hydraulic pressure losses  
in vertical hose lines, and the mass-dimensional limitations of the aircraft. The paper describes  
in detail a step-by-step algorithm that includes verifying the conditions of payload margin  
and permissible working pressure in the system. The proposed methodology allows for automating 
the equipment selection process, filtering out technically unfeasible configuration options,  
and minimizing the number of unmanned aerial vehicles required to ensure the normative intensity 
of the extinguishing agent supply. The obtained results form a theoretical and practical basis  
for the design and implementation of new-generation mobile robotic fire extinguishing complexes. 
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Введение 
 

Правительство Российской Федерации в Стратегии развития беспилотной авиации 
Российской Федерации на период до 2030 г. и на перспективу до 2035 г. и плане мероприятий  
по ее реализации выделяет восемь основных направлений применения беспилотных 
авиационных систем (БАС), одним из которых является тушение пожаров.  

По данным Федеральной службы по экологическому, технологическому и атомному 
надзору [1] на территории Российской Федерации эксплуатируется 3 968 опасных 
производственных объектов нефтехимических, нефтегазоперерабатывающих производств  
и опасных производственных объектов (ОПО). Данные объекты играют важную роль  
в стратегической экономической независимости страны, что влечет особое внимание  
по обеспечению их безопасности. 

Анализ сведений об аварийности ОПО (рис. 1) за последние 10 лет (2015–2024 гг.), 
сопровождающейся большим материальным ущербом, подтверждает актуальность применения 
мер по обеспечению предотвращения пожаров и противопожарной защиты1 [1–3]. 

 

                                                            
1 Технический регламент о требованиях пожарной безопасности: Федер. закон Рос. Федерации  

от 22 июля 2008 г. № 123-ФЗ. Доступ из справ.-правовой системы «КонсультантПлюс». 
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Рис. 1. Сведения об аварийности на поднадзорных ОПО  

различных классов опасности в 2015–2024 гг. 
 
В настоящее время тушение пожаров на ОПО нефтегазоперерабатывающих 

производств и объектов нефтепродуктообеспечения осуществляется либо с помощью 
первичных средств пожаротушения [4], либо основных пожарных автомобилей 
подразделений пожарной охраны [5, 6]. 

В данной работе предприняты попытки по расчёту параметров систем пожаротушения  
с применением тяжёлых БВС для тушения пожаров на ОПО нефтегазоперерабатывающих 
производств и объектов нефтепродуктообеспечения. 

Для разработки методики расчёта параметров системы пожаротушения с применением 
тяжёлых БВС проанализированы подходы построения математических моделей с летно-
техническими характеристиками БВС [7, 8]. 

 
Метод исследования 

 
Разработка систем пожаротушения с применением тяжёлых БВС [9–11] требует 

строгого соблюдения инженерных ограничений, связанных с массогабаритными 
характеристиками, гидравлическим сопротивлением рукавных линий и обеспечением 
необходимой интенсивности подачи огнетушащего раствора на высоту объекта.  

Для определения рациональных сочетаний технических средств разработана методика 
расчёта, реализующая поэтапную оценку пригодности различных конфигураций 
оборудования и формирующая перечень допустимых вариантов для последующего 
конструкторского проектирования. Этапы разработанной методики представлены ниже. 

1. Общие принципы построения методики. 
Основная идея методики заключается в системной интеграции трёх групп параметров: 
 геометрических – характеризующих размеры объекта тушения (высоту и ширину 

колонны); 
 гидравлических – описывающих потери давления в рукавных линиях и на подъёме 

раствора; 
 механических – связанных с грузоподъёмностью БВС и массой переносимого 

оборудования. 
Все группы параметров взаимосвязаны: увеличение высоты колонны вызывает рост 

потерь давления и массы воды в рукаве, что, в свою очередь, ограничивает выбор БВС  
по грузоподъёмности. Методика обеспечивает последовательный пересчёт всех этих 
зависимостей с автоматической проверкой выполнения ограничительных условий. 
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2. Исходные данные и допущения. 
В качестве исходных параметров принимаются значения геометрических 

характеристик колонны – высота H и ширина B (в метрах), а также нормативная 
интенсивность подачи огнетушащих веществ (ОТВ) (раствора) I (л/(м²·с), отражающая 
требуемую плотность орошения защищаемой поверхности. Дополнительно задаются 
условные величины потерь давления при подъёме раствора на 10 м (ΔP10) и коэффициент 
запаса грузоподъёмности ks, который ограничивает максимально допустимую нагрузку на 
БВС значением 0,9 от его номинальной грузоподъёмности. Технические характеристики 
БВС, пожарных стволов и рукавов принимаются по справочным данным и включают: массу, 
диаметр, рабочее давление, потери давления, массу воды и рукава на каждые 20 м длины. 

3. Этап 1. Геометрический расчёт и определение требуемого расхода на начальном 
этапе проводится определением условной площади внешней поверхности колонны, 
подлежащей орошению, по формуле: 

 
ܵ ൌ ܪ ∙  ,ܤ

 
где S – площадь фронта тушения, м². 

На основании рассчитанной площади определяется требуемый суммарный расход 
огнетушащего раствора: 

 
ܳ௥௘௤ ൌ ܵ ∙  ,ܫ

 
где Qreq – требуемый суммарный расход огнетушащего раствора, л/с.  

Данный показатель характеризует минимальный объём раствора, необходимый для 
создания эффективного орошающего слоя на поверхности колонны. 

Одновременно проводится вычисление потерь давления, вызванных подъёмом 
раствора на заданную высоту: 

 

∆ ௘ܲ௟௘௬ ൌ
ܪ
10

∙ ∆ ଵܲ଴, 

 
где ΔPelev – потери давления, атм.  

Это значение используется далее для определения совокупных гидравлических затрат 
в системе. 

4. Этап 2. Определение необходимого числа пожарных стволов.  
Каждый ствол характеризуется определённым расходом Qств, который зависит от его 

конструктивного исполнения. Минимальное количество стволов, способных обеспечить 
требуемый расход раствора, определяется соотношением: 

 

݊ств ൌ ඄
ܳ௥௘௤
ܳств

ඈ, 

 
где знак ۀڿ означает округление в сторону большего целого числа. 

На данном этапе осуществляется оценка распределения требуемого расхода  
по количеству рабочих позиций, обслуживаемых отдельными БВС. 

5. Этап 3. Расчёт массы оборудования и проверка грузоподъёмности.  
Для каждого сочетания БВС и ствола производится анализ возможности физического 

размещения оборудования с учётом массы рукавной линии и воды, находящейся в ней. 
Рассмотрение проводится при условии, что длина рукавной линии эквивалентна высоте 
колонны.  
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1) Масса рукава: 
 

݉р ൌ
݉20
20

∙ ݈. 

 
2) Масса воды, заполняющей рукав: 
 

݉в ൌ
݉20
20

∙ ݈. 

 
3) Масса пожарного ствола: 
 

݉с ൌ ݉ствол. 
 

4) Полная масса полезной нагрузки: 
 

݉общ ൌ ݉р ൅݉в ൅݉с. 
 

5) Проверка допустимости по грузоподъёмности: 
 

݉общ ൑ ݇௦ ∙ ݉доп, 
 
где mдоп – паспортная грузоподъёмность БВС, кг. 

Условие обеспечивает сохранение эксплуатационной надёжности БВС и исключает 
перегруз конструкции при полёте и удержании ствола. Если неравенство не выполняется, 
рассматриваемая комбинация исключается из дальнейшего анализа. 

6. Этап 4. Расчёт потерь давления в рукавной линии. 
После определения допустимых по массе комбинаций производится расчёт 

гидравлических потерь в рукавной линии, вызванных сопротивлением движению раствора. 
Потери рассчитываются пропорционально длине рукава:  

 

∆ рܲук ൌ
∆ܲ20
20

∙ ݈. 

 
Суммарное давление в системе на входе ствола складывается из трёх компонентов: 
 

сܲум ൌ ∆ ௘ܲ௟௘௬ ൅ ∆ рܲук ൅ сܲтв. 
 
7. Этап 5. Проверка допустимого рабочего давления. 
Проверка выполняется путём сопоставления рассчитанного суммарного давления  

с допустимым рабочим давлением рукава: 
 

сܲум ൏ рܲаб, 
 
где Pраб – предельное давление, при котором эксплуатация рукава считается безопасной.  

Если условие не выполняется, комбинация исключается из списка допустимых. 
8. Этап 6. Формирование и систематизация результатов.  
Для каждой комбинации, удовлетворяющей обоим критериям – по массе и по давлению, – 

формируются следующие результаты: 
 количество БВС, исходя из nств; 
 тип БВС (наименование и грузоподъёмность); 
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 тип пожарного ствола и диаметр рукава; 
 длина рукавной линии l и число 20-метровых участков Nрук=l/20; 
 общий расход раствора Qитог=Qств·nств; 
 потери давления по высоте ΔPelev; 
 потери давления в рукаве ΔPрук; 
 суммарные потери ΔPсум= ΔPelev+ΔPрук; 
 масса полезной нагрузки на БВС mобщ; 
 максимально допустимая масса ks·mдоп. 
Результаты сортируются по числу БВС и выводятся в табличной форме, что позволяет 

оперативно оценить техническую реализуемость каждого варианта. 
9. Этап 7. Логическая структура методики.  
Методика реализует последовательную процедуру логического фильтрования 

возможных комбинаций оборудования: 
1) Ввод исходных параметров H и B; 
2) Расчёт площади S, расхода Qreq и потерь по высоте ΔPelev; 
3) Для каждого типа ствола – расчёт необходимого числа nств; 
4) Для каждого ствола – перебор возможных типов БВС: 

 расчёт массы оборудования; 
 проверка по грузоподъёмности; 
 при положительном результате – расчёт потерь давления; 
 проверка по рабочему давлению рукава; 
 сохранение комбинации, если обе проверки пройдены; 

5) Формирование итогового массива допустимых конфигураций; 
6) Сортировка и вывод данных в табличной форме для анализа. 
10. Особенности и ограничения модели.  
Методика реализует детерминированное статическое моделирование, не учитывающее 

динамические эффекты полёта и неустойчивость гидравлического режима. Предполагается 
равномерная подача раствора по высоте и отсутствие колебаний давления при работе 
насосного оборудования. Каждое БВС рассматривается как автономная единица, 
обслуживающая одну рукавную линию и один ствол. Потери в соединениях, местные 
сопротивления, температурное расширение и аэродинамические воздействия не учитываются. 

Такой подход позволяет упростить первичный инженерный анализ и определить 
допустимые границы применимости системы, являющиеся основой для последующих 
уточнённых аэрогидродинамических и прочностных расчётов. 

11. Итоговое описание логики работы.  
В обобщённом виде методика представляет собой адаптивную процедуру поиска 

решений, направленную на минимизацию числа БВС при сохранении технической 
надёжности системы. Каждый цикл вычислений объединяет три критерия: 

1) Обеспечение требуемого расхода раствора; 
2) Соблюдение допустимой грузоподъёмности; 
3) Выполнение условий прочности рукавной линии. 
Только при одновременном выполнении всех трёх критериев комбинация включается 

в результирующую выборку. Полученный перечень допустимых сочетаний служит 
обоснованием для формирования конструктивных предложений по проектированию 
мобильных роботизированных систем пожаротушения нового поколения. 

Графическое представление методики расчёта параметров системы пожаротушения  
с применением тяжёлых БВС представлено в виде блок-схемы алгоритма (рис. 2). 
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Начало

Ввод информации о характеристиках ректификационной колонны 
(её высота и ширина в метрах), W, H. 

Определение нормативной интенсивности подачи пенообразователя в 
соответствии с таблицей  А.1 СП 155.13130.2014 (0,08 л/(м2*с)), I.

Определение давления на 
выходе рукавной  линии с 
учетом потерь давления в 

рукавной линии при 
подъеме на заданную 
высоту и  длины 
рукавной линии

Вывод информации о 
невозможности подбора для 
ректификационной колонны с 
заданными характеристиками 
системы с применением БВС, 
позволяющей  тушить  пожар 

в ней

Завершение

Нет

Да

1. Определение площади сечения ректификационной колонны в горизонтальной 
плоскости, м2, S. 

2. Определение расчетного расхода раствора пенообразователя с учетом указанной 
площади , л/с. Q=S*I.

3. Определение расчетных потерь напора при подъеме на выбранную высоту W 
ректификационной колонны, атм., ΔP_под.

Расчет необходимого типа и количества генераторов пены средней кратности, использование которых 
позволяет тушить пожар на такой площади (ГПС-2000, ГПС-600, ГПС-200)

Подгрузка из базы данных сведений о грузоподъемности  БВС 
вертикального взлета, кг, C. 

Расчет необходимого количества пожарных рукавов различного диаметра под различные 
генераторы пены средней кратности 

Определение поднимаемого на высоту общего веса с учетом веса ствола, веса рукавной линии, веса 
столба воды в рукавной линии, кг

Определение возможности подъема 
каким-либо из возможно используемых БВС пожарно-

технического оборудования на высоту 
ректификационной колонны с коэффициентом 

безопасности 0,9 

Определение 
возможности работы генераторов 
пены с учетом давления раствора 

пенообразователя  на выходе рукавной 
линии на заданной 

высоте 

Нет

Да

Вывод информации о всех вариантах использования БВС, 
генераторах пены и рукавах, позволяющих тушить 

ректификационную колонну с заданными характеристиками

 
 

Рис. 2. Блок-схема алгоритма расчёта параметров  
системы пожаротушения с применением тяжёлых БВС 
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Разработанный алгоритм реализует детерминированную модель и служит 
универсальным инструментом инженерной оценки и выбора конфигурации системы 
пожаротушения с использованием тяжёлых БВС, обеспечивая необходимую степень 
обоснованности при проектировании, моделировании и разработке перспективных методов 
тушения пожаров на высотных технологических установках нефтеперерабатывающей 
промышленности. 

В обобщённом виде алгоритм представляет собой адаптивную процедуру поиска 
решений, направленную на минимизацию числа БВС при сохранении технической 
надёжности системы. 

 
Выводы 

 
Анализ статистических данных об аварийности на объектах нефтегазового комплекса 

за 2015–2024 гг. показывает высокую потребность в новых средствах доставки ОТВ, 
особенно при тушении пожаров на высотных колонных аппаратах, где возможности 
наземной техники ограничены. 

Разработанная инженерная методика расчета системно увязывает три группы 
критически важных параметров: геометрические размеры объекта тушения, гидравлические 
потери в вертикальных рукавных линиях и ограничения по грузоподъемности тяжелых БВС. 

Предложенный алгоритм позволяет проводить автоматизированный отсев 
технических решений, не удовлетворяющих условиям безопасности (по превышению массы 
полезной нагрузки или рабочего давления в рукаве), и формировать перечень допустимых 
конфигураций оборудования. 

Методика обеспечивает возможность на этапе проектирования определить 
необходимое количество БВС, тип пожарного оборудования и параметры рукавных линий 
для обеспечения требуемой интенсивности подачи ОТВ. Это создает базу для разработки 
перспективных роботизированных систем пожаротушения, снижающих риск для личного 
состава пожарной охраны. 
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