Russian Federation
graduate student
Russian Federation
Russian Federation
The construction boom in megacities creates serious environmental risks for urban residents. Particularly dangerous are fine dust particles PM0,5–PM10, which are formed during construction work and can cause significant harm to the health of citizens. To ensure the safety of the urban environment, it is critically important to implement dust emission monitoring systems and conduct regular scientific research. This should become an integral part of modern urban planning, as air pollution in large urban agglomerations has reached an alarming scale. The results of environmental monitoring of construction sites play a key role in the development of effective design solutions, especially in conditions of intensive point development of modern cities. The inefficiency of the risk management system at construction sites often causes accidents and negative impact on the environment. At the same time, potential environmental risks may differ dramatically for different construction sites, depending on their characteristics of the territory where the construction site is located. Particular concern is caused by point-based development, where the concentration of potential environmental threats reaches a high level. Applying various indicators of pollution and impact on public health, a comprehensive assessment of the environmental situation in the region was carried out. The results obtained not only revealed the key environmental problems of the territory, but also laid the foundation for the development of effective measures to reduce air pollution in the city. A study of dust pollution in urban areas near point construction revealed an excess of MPC PM10 by more than 2 times: the maximum single concentration of PM10 reached 672 µg/m3. The maximum single concentration of PM2,5 was 182 µg/m3 during dismantling, excavation and welding operations. This distribution indicates local dust pollution as the main source.
point-pattern housing development, dust emissions in construction, environmental safety of urban areas, fine dust PM2,5 and PM10, ecological risks in construction
1. Study on the Effects of Dust Particle Size and Respiratory Intensity on the Pattern of Respiratory Particle Deposition in Humans / G. Zhou [et al.] // Indoor Air. 2024. Vol. 2024. P. 5025616.
2. Cui Tianxin. Development of Dust Monitoring in Urban Construction Sites and Suggestions on Dust Control // Journal of Innovation and Development. 2023. Vol. 2. P. 18–21.
3. Zuo J. Dust pollution control on construction sites: Awareness and self-responsibility of managers // J. Clean. Prod. 2017. Vol. 166. P. 312–320.
4. Yu B. Analyzing environmental risk, source and spatial distribution of potentially toxic elements in dust of residential area in Xi’an urban area, China // Ecotoxicol. Environ. Saf. 2021. Vol. 208. P. 111679.
5. Tao G. Reducing Construction Dust Pollution by Planning Construction Site Layout // Buildings. 2022. Vol. 12. P. 531.
6. Yang J. Air pollution dispersal in high density urban areas: Research on the triadic relation of wind, air pollution, and urban form // Sustainable Cities and Society. 2020. Vol. 54. P. 101941.
7. Tong R. The construction dust-induced occupational health risk using Monte-Carlo simulation // J. Clean. Prod. 2018. Vol. 184. P. 598–608.
8. Han S.-W. Modification of Hybrid Receptor Model for Atmospheric Fine Particles (PM2.5) in 2020 Daejeon, Korea, Using an ACERWT Model // Atmosphere. 2024. Vol. 15. P. 477.
9. Kalyuzhina E.A. Issledovanie pylevydelenij v okruzhayushchuyu atmosferu i v atmosferu rabochej zony pri proizvodstve remontno-stroitel'nyh rabot // Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Ser.: Stroitel'stvo i arhitektura. 2020. № 4 (81). S. 371–378.
10. Manzhilevskaya S.E. Vliyanie melkodispersnoj pyli na okruzhayushchuyu sredu pri lokal'nom stroitel'stve // Stroitel'stvo i rekonstrukciya. 2020. T. 6. № 92. C. 86–99.
11. Manzhilevskaya S.E. Ekologicheskij monitoring ekologicheskoj bezopasnosti v zonah stroitel'stva, rekonstrukcii i funkcionirovaniya ob"ektov // Stroitel'nye materialy i izdeliya. 2019. T. 2. № 3. S. 78–84.
12. Issledovanie dispersnogo sostava pyli gorodskoj sredy / V.N. Azarov [i dr.] // Vestnik MGSU. 2020. № 15. S. 432–442.
13. Construction and Analysis of the Ecological Security Pattern in Territorial Space in Shaanxi of the Yellow River Basin, China / Z. Liu [et al.] // Atmosphere. 2025. Vol. 16. P. 217.
14. Lozhkina O.V. Issledovanie zagryazneniya pridorozhnogo vozduha g. Samary toksichnymi chasticami RM10 i RM2,5 pri neblagopriyatnyh meteorologicheskih i transportnyh usloviyah // Tekhniko-tekhnologicheskie problemy servisa. 2023. T. 4. № 66. S. 10–17.
15. Kim J.-H., Sohn J.-I., Oh S.-Yu. Environmental monitoring of toxic metals in roadside soil and dust in Ulsan, South Korea: Pollution evaluation and distribution characteristics // Environ. Monit. Assess. 2020. Vol. 192. P. 773.
16. Time-Series Monitoring of Dust-Proof Nets Covering Urban Construction Waste by Multispectral Images in Zhengzhou, China / Z. Li [et al.] // Remote Sens. 2022. Vol. 14. P. 3805.
17. An ARPS-CMAQ Modeling Approach for Assessing the Atmospheric Assimilative Capacity of the Beijing Metropolitan Region / S. Cheng [et al.] // Water Air Soil Pollut. 2007. Vol. 181. P. 211–224.
18. Ob utverzhdenii metodov raschetov rasseivaniya vybrosov vrednyh (zagryaznyayushchih) veshchestv v atmosfernom vozduhe: prikaz Minprirody Ros. Federacii ot 6 iyunya 2017 g. № 273. M.: Minprirody Rossii, 2017. 110 c.
19. Lozhkina O.V., Penchenkov A.Yu., Malyshev S.A. Sovershenstvovanie i povyshenie effektivnosti informacionnogo processa monitoringa i prognozirovaniya opasnogo zagryazneniya vozdushnoj sredy melkodispersnymi vzveshennymi chasticami // Tekhnologii postroeniya kognitivnyh transportnyh sistem: materialy Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem. SPb.: FGBOU VO PGUPS, 2021. S. 175–177.
20. Lozhkina O.V., Nikitina T.G., Cvetkov V.A. Sovershenstvovanie instrumental'nyh metodov analiza opasnyh zagryaznitelej vozduha na primere opredeleniya ammiaka // Problemy upravleniya riskami v tekhnosfere. 2022. T. 1. № 61. S. 97–107.
21. Lozhkina O.V. Metodicheskoe i pribornoe obespechenie dlya kontrolya opasnogo vozdejstviya avtotransportnoj tekhniki na atmosfernyj vozduh // Innovacii i perspektivy razvitiya gornogo mashinostroeniya i elektromekhaniki: IPDME-2021: sb. tezisov VIII Mezhdunar. nauch.-prakt. konf. SPb.: S.-Peterb. gornyj un-t, 2021.
22. Particle Size-Dependent Monthly Variation of Pollution Load, Ecological Risk, and Sources of Heavy Metals in Road Dust in Beijing, China / C. Men [et al.] // Toxics. 2025. Vol. 13 (1). P. 40.
23. Ecological Suitability Evaluation of City Construction Based on Landscape Ecological Analysis / Wang [et al.] // Sustainability. 2024. Vol. 16 (21). P. 9178.
24. Yao Q., An N., Ci H. The Dynamics and Trends of International Research on Urban Carbon Risk // Sustainability. 2025. Vol. 17 (1). P. 7.
25. Harakteristiki zagryaznyayushchih veshchestv: sprav. Perm': FGBU UralNII «Ekologiya». 2017. 107 s.
26. Ecological Risk Assessment and Sustainable Management of Pollutants in Hydroponic Wastewater from Plant Factories / H-D. Ryu [et al.] // Sustainability. 2024. Vol. 16 (17). P. 7688.
27. Karakatsanis G, Mamassis N. Energy, Trophic Dynamics and Ecological Discounting // Land. 2023. Vol. 12 (10). P. 1928.
28. GOST R 58577–2019. Pravila ustanovleniya normativov dopustimyh vybrosov zagryaznyayushchih veshchestv proektiruemymi i dejstvuyushchimi hozyajstvuyushchimi sub"ektami i metody opredeleniya etih normativov. M.: AO «NII Atmosfera». 2019. 16 s.




