MUP ZhKH Vologdagorvodokanal (ochistnye sooruzheniya vodoprovoda, nachal'nik smeny)
from 01.01.2017 until now
Russian Federation
Russian state geological exploration university named after Sergo Ordzhonikidze (department «Construction of water supply and sanitation systems and structures», professor)
Russian Federation
A «fault analysis tree» has been compiled for the technology of electroflotation wastewater treatment at a fish processing plant, which ensures the creation of a logical safety scheme for the entire water treatment process. The numerical probability of occurrence of accidental hazards, events and emergency situations that lead to disruption of the operational and functional parameters of specific components and parts of an electroflotation installation has been established. The method of establishing and calculating the eliminated ecological and economic damage from pollution of water bodies based on the indicator of chemical oxygen demand is substantiated. A probabilistic approach to risk assessment has been implemented. The probabilities of adverse events for the environment when using electrochemical wastewater treatment at a fish processing plant are predicted. The factors that have a negative impact on the efficiency of electroflotation wastewater treatment from fish processing have been identified. The effectiveness of the disinfection effect on treated wastewater with a chlorine-containing reagent obtained electrolytically from artesian waters with high mineralization has been evaluated.
fish processing effluents, chemical oxygen demand, electroflotation, «fault analysis tree», risk assessment, probability, quantitative method, analysis
1. Kinetic study ofslaughterhouse wastewater treatment by electrocoagulation using Fe electrodes / N. Yousefi [at al.] // Water Science & Technology. 2012. Vol. 66. № 4. P. 754–760. DOI:https://doi.org/10.2166/wst.2012.232.
2. Alam R., Shang J.Q., Khan A.H. Bubble size distribution in a laboratory-scale electroflotation study // Environmental Monitoring and Assessment. 2017. Vol. 189. № 4. P. 191–205. DOI:https://doi.org/10.1007/s10661-017-5888-4.
3. Reduction of COD and TSS frompaper industries wastewater using electro-coagulation and chemical coagulation / M. Al-Shannag [et al.] // Separation Science and Technology. 2012. Vol. 47. № 5. P. 700–708. DOI:https://doi.org/10.1080/01496395.2011.634474.
4. Mohtashami R., Shang J.Q. Electroflotation for Treatment of Industrial Wastewaters: A Focused Review // Environmental Processes. 2019. Vol. 6. № 2. P. 1–29. DOI:https://doi.org/10.1007/s40710-019-00348-z.
5. Voda tekhnogennaya: problemy, tekhnologii, resursnaya cennost' / M. Shulenina [i dr.]. M.: MGTU im. N.E. Baumana, 2015. 402 s.
6. Boron removal from produced water using electrocoagulation / E.H. Ezechi [et al.] // Process Safety and Environmental Protection. 2014. № 92. P. 509–514.
7. Sposob ochistki stochnyh vod: pat. 2767943 Ros. Federaciya, MPK C02F 1/465, C02F 1/467 / L.I. Sokolov, S.V. Kolobova, V.A. Silinskij; zayavitel' i patentoobladatel' Vologodskij gos. un-t; №: 2021114389; zayavl. 21.05.2021; opubl. 22.03.2020, byul. № 9.
8. Elektroflotaciya v processah vodoochistki i izvlecheniya cennyh komponentov iz zhidkih tekhnogennyh othodov. Obzor / V.A. Kolesnikov [i dr.] // Teoreticheskie osnovy himicheskoj tekhnologii. 2017. T. 51. № 4. S. 361–375.
9. Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes / F. Baierle [et al.] // Journal of Materials Research and Technology. 2015. Vol. 4. № 2. P. 274–281.
10. Benin D.M. Diagnostika i nadezhnost' gidravlicheskih sistem v usloviyah gorodskogo hozyajstva: monografiya. M.: MESKH, 2018. 201 s.
11. Ogundele O.D., Oyegoke D.A., Anaun T.E. Exploring the potential and challenges of electrochemical processes for sustainable waste water remediation and treatment // Acadlore Trans. Geosci. 2023. Vol. 2. P. 80–93.
12. Review on emerging water contaminants and the application of sustainable removal technologies / R. Kumar [et al.] // Case Studies Chem. Environ. 2022. Vol. 6. P. 1–14. DOI:https://doi.org/10.1016/j.cscee.2022.100219.
13. Ogundele O.D., Adewumi A.J., Oyegoke D.A. Phycoremediation: Algae as an effective agent for sustainable remediation and waste water treatment // Earth Sci. Res. J. 2023. Vol. 10. № 1. P. 7–17. DOI:https://doi.org/10.18280/eesrj.100102.
14. Trevino-Resendez J.J., Medel A., Meas Yu. Electrochemical technologies for treating petroleum industry wastewater // Cur. Opin. Electroche. 2021. Vol. 27. P. 100690. DOI:https://doi.org/10.1016/j.coelec.2021.100690.
15. Wastewater Treatment and Reuse: a Review of its Applications and Health Implications / K.K. Kesari [et al.] // Water Air Soil Pollut. 2021. Vol. 208. P. 1–28. DOI:https://doi.org/10.1007/s11270-021-05154-8.
16. Ganiyu S.O., Mart´ınez-Huitle C.A., Oturan M.A. Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms // Oturan Curr. Opin. Electroche. 2021. Vol. 5. P. 100678. DOI:https://doi.org/10.1016/j.coelec.2020.100678.




