Russian Federation
employee from 01.01.1972 to 01.01.2025
Russian Federation
UDC 355.588
An automated information system for assessing the physiological readiness of specialists to perform tasks in conditions of limited breathing mixture resources is presented. The purpose of the system is to increase the reliability and safety of personnel actions in extreme situations through personalized prediction of physiological reactions. The system implements a hybrid model of intelligent data analysis that predicts the time series of pulmonary ventilation based on route characteristics, physical exertion, and individual user characteristics. The model is based on long short-term memory sequence-to-sequence architecture and includes a trainable spectral-inertial output signal smoothing layer. A modified loss function is proposed that takes into account error asymmetry and data timeliness, which improves the accuracy and reliability of the forecast. The system is implemented as a web application with an interface for setting routes, selecting users and visualizing results. Experimental tests have confirmed the high accuracy of the model and its resistance to individual variability, demonstrating the effectiveness of the proposed approach for training and assessing staff readiness.
automated information system, data mining, information technology, training of rescuers, training of industrial personnel, insulating breathing apparatus, neural network models
1. Tulupov D.Yu., Tyutyunnik V.M. Obrabotka dannyh dlya informacionnoj sistemy podgotovki spasatelej i promyshlennogo personala // Pribory i sistemy. Upravlenie. 2025. № 7. S. 25–31. DOI:https://doi.org/10.25791/pribor.7.2025.1598.
2. Tulupov D.Yu., Putin S.B., Tyutyunnik V.M. Avtomatizirovannaya informacionnaya sistema registracii parametrov raboty individual'nyh sredstv zashchity organov dyhaniya s primeneniem besprovodnyh tekhnologij peredachi dannyh // Informacionnye resursy Rossii. 2024. № 4 (199). S. 44–59. DOI:https://doi.org/10.52815/0204-3653_2024_4199_44.
3. Tulupov D.Yu. Modeli intellektual'nogo analiza dannyh i informacionnyh tekhnologij dlya podgotovki spasatelej i promyshlennogo personala // Informacionnye processy, sistemy i tekhnologii. 2025. T. 6. № 2 (34). S. 12–22. DOI:https://doi.org/10.52529/27821617_2025_6_2_00.
4. Cherkasov D.Yu., Ivanov V.V. Mashinnoe obuchenie // Nauka, tekhnika i obrazovanie. 2018. № 5 (46). S. 63–66.
5. Arlanova A.A., Nobatov A.M. Intellektual'nyj analiz dannyh: vidy i metody // Vestnik nauki. 2023. T. 2. № 1 (58). S.7–10.
6. Sutskever I., Vinyals O., Le Q.V. Sequence to sequence learning with neural networks // Advances in Neural Information Processing Systems. 2014. Vol. 27. P. 3104–3112.
7. Yemets K., Izonin I., Dronyuk I. Enhancing the FFT-LSTM Time-Series Forecasting Model via a Novel FFT-Based Feature Extraction–Extension Scheme // Big Data and Cognitive Computing. 2025. Vol. 9. № 2. P. 35. DOI:https://doi.org/10.3390/bdcc9020035.
8. Gopakumar V., Pamela S., Zanisi L. Fourier-RNNs for modelling noisy physics data // arXiv preprint arXiv:2302.06534. 2023. DOI:https://doi.org/10.48550/arXiv.2302.06534.
9. Welch P.D. The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging over short modified periodograms // IEEE Transactions on Audio and Electroacoustics. 1967. Vol. 15. P. 70–73. DOI:https://doi.org/10.1109/TAU.1967.1161901.
10. Chistyakov S.P. Random forests: a review // Proceedings of the KarSC RAS. 2013. № 1. P. 107–118.
11. Smyl S., Dudek G., Pełka P. ES-dRNN: a hybrid exponential smoothing and dilated recurrent neural network model for short-term load forecasting // IEEE Transactions on Neural Networks and Learning Systems. 2023. Vol. 35. № 8. P. 11346–11358.




