Russian Federation
from 01.01.2013 until now
Russian Federation
Early fire detection is an important factor that can reduce economic and environmental damage and reduce the number of victims. Despite the growing popularity of neural networks as a modern method for solving problems in computer vision, methodological problems often arise in works in this subject area, leading to a decrease or complete devaluation of practical results. This study is devoted to finding such problems among existing works on fire detection. The first section contains a contrast analysis of two works, during which 11 meta-criteria were identified to assess the quality of studies. The second section contains an overview of several works devoted to fire detection in various conditions, both by «classical» methods and using convolutional neural networks. The importance of the correct choice of metrics, the need to choose a model as a process, and a full description of the source data are shown.
computer vision, machine learning, artificial intelligence, object detection, neural networks, convolutional neural networks, Haar Cascades, early fire detection
1. RIA novosti. V MCHS nazvali chislo pogibshih pri pozharah v 2024 godu v Rossii // RIA novosti. 2024. URL: https://ria.ru/20250212/mchs-1998813971.html (data obrashcheniya: 30.04.2025).
2. Federal'noe agentstvo lesnogo hozyajstva. Rosleskhoz: v 2024 kolichestvo lesnyh pozharov sokratilos' v 1,5 raza v sravnenii so srednepyatiletnimi znacheniyami // Federal'noe agentstvo lesnogo hozyajstva. 2024. URL: https://rosleshoz.gov.ru/news/federal/rosleskhoz-v-2024-kolichestvo-lesnykh-pozharov-sokratilos-v-1-5-raza-v-sravnenii-so-srednepyatiletnimi-znacheniyami-n11213/ (data obrashcheniya: 30.04.2025).
3. Terra Tekh. Zharkoe leto 2022: lesnye pozhary Central'nogo federal'nogo okruga // Terra Tekh. 2022. URL: https://geonovosti.terratech.ru/ecology/zharkoe-leto-2022-lesnye-pozhary-tsentralnogo-federalnogo-okruga/ (data obrashcheniya: 30.04.2025).
4. Ershov D.V., Sochilova E.N. Kolichestvennye ocenki pryamyh pirogennyh emissij ugleroda v lesah Rossii po dannym distancionnogo monitoringa 2021 goda // Voprosy lesnoj nauki. 2022. T. 5. № 4. S. 68–85. DOI:https://doi.org/10.31509/2658-607x-202254-117. EDN ZMZGMU.
5. Belomestnyh A., Malyhin A., Peshkov A. Analiz pozharnoj opasnosti v zhilom sektore Rossijskoj Federacii // Vestnik Vostochno-Sibirskogo instituta MVD Rossii. 2009. № 4 (51). S. 71–79. EDN UGYWYX.
6. Kakde A., Arora N., Sharma D. Fire Detection System Using Artificial Intelligence Techniques // International Journal of Research in Engineering. 2018. Vol. 8. № 11. P. 1–5.
7. Abdurazak K.A., Duisek B.E. Overview and comparison of convolutional neural networks in fire detection // Nauchnyj aspekt. 2023. Vol. 20. № 5. P. 2500–2505. EDN SZOJBK.
8. Gradient-based learning applied to document recognition / Yu. Lecun [et al.] // Proceedings of the IEEE. 1998. Vol. 86. № 11. P. 2278–2324. DOI:https://doi.org/10.1109/5.726791.
9. Government of Canada. Open Government Portal // Government of Canada. 2024. URL: https://open.canada.ca/en (data obrashcheniya: 18.03.2025).
10. United States Geological Survey. United States Geological Survey // United States Geological Survey. 2024. URL: https://www.usgs.gov/ (data obrashcheniya: 18.03.2025).
11. Wildfire Prediction Dataset (Satellite Images). 2024. URL: https://www.kaggle.com/datasets/abdelghaniaaba/wildfire-prediction-dataset (data obrashcheniya: 18.03.2025).
12. Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study / G. H. de Almeida Pereira [et al.] // ISPRS Journal of Photogrammetry and Remote Sensing. 2021. Vol. 178. P. 171–186. DOI:https://doi.org/10.1016/j.isprsjprs.2021.06.002.
13. Murphy J.H. An overview of convolutional neural network architectures for deep learning // Microway Inc. 2016.
14. Roy P., Kumar A. Convolutional neural network for text: a stepwise working guidance // SSRN Electronic Journal. 2021. DOI:https://doi.org/10.2139/ssrn.3973041.
15. Active fire detection using Landsat-8/OLI data / W. Schroeder [et al.] // Remote Sensing of Environment. 2016. Vol. 185. P. 210–220. DOI:https://doi.org/10.1016/j.rse.2015.08.032.
16. HOTMAP: Global hot target detection at moderate spatial resolution / S.W. Murphy [et al.] // Remote Sensing of Environment. 2016. Vol. 177. P. 78–88. DOI:https://doi.org/10.1016/j.rse.2016.02.027.
17. Kumar S.S., Roy D.P. Global operational land imager Landsat-8 reflectance-based active fire detection algorithm // International Journal of Digital Earth. 2018. Vol. 11. № 2. P. 154–178. DOI:https://doi.org/10.1080/17538947.2017.1391341.
18. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing, 2015. P. 234–241. DOI:https://doi.org/10.1007/978-3-319-24574-4_28.
19. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York, NY, USA: Springer, 2009 (Springer Series in Statistics).
20. García S., Luengo J., Herrera F. Data Preprocessing in Data Mining. Vol. 72. New York, NY, USA: Springer, 2015 (Intelligent Systems Reference Library).
21. Saldiva de André C. D., Elian S.N. A Comparison of the Estimators of the Scale Parameter of the Errors Distribution in the L1 Regression // Open Journal of Statistics. 2022. Vol. 12. № 2. P. 261–276. DOI:https://doi.org/10.4236/ojs.2022.122018.
22. Xuan Truong T., Kim J.-M. Fire flame detection in video sequences using multi-stage pattern recognition techniques // Engineering Applications of Artificial Intelligence. 2012. Vol. 25. № 7. P. 1365–1372. DOI:https://doi.org/10.1016/j.engappai.2012.05.007.
23. Çelik T., Demirel H. Fire detection in video sequences using a generic color model // Fire Safety Journal. 2009. Vol. 44. № 2. P. 147–158. DOI:https://doi.org/10.1016/j.firesaf.2008.05.005.
24. Ko B.C., Cheong K.-H., Nam J.-Y. Fire detection based on vision sensor and support vector machines // Fire Safety Journal. 2009. Vol. 44. № 3. P. 322–329. DOI:https://doi.org/10.1016/j.firesaf.2008.07.006.
25. Computer vision based method for real-time fire and flame detection / B. Töreyin [et al.] // Pattern Recognition Letters. 2006. Vol. 27. P. 49–58. DOI:https://doi.org/10.1016/j.patrec.2005.06.015.
26. Borges P.A., Izquierdo E. Probabilistic Approach for Vision-Based Fire Detection in Videos // Circuits and Systems for Video Technology, IEEE Transactions on. 2010. Vol. 20. P. 721–731. DOI:https://doi.org/10.1109/TCSVT.2010.2045813.
27. Ramasubramanian S., Muthukumaraswamy S., Sasikala A. Fire Detection using Artificial Intelligence for Fire-Fighting Robots // 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). United States: IEEE, 2020. P. 180–185. DOI:https://doi.org/10.1109/ICICCS48265.2020.9121017.
28. FireNET dataset. 2024. URL: https://github.com/OlafenwaMoses/FireNET/releases (data obrashcheniya: 20.03.2025).
29. Wildfire Flame and Smoke Detection Using Static Image Features and Artificial Neural Network / F.M.A. Hossain [et al.] // 1st International Conference on Industrial Artificial Intelligence (IAI). 2019. P. 1–6. DOI:https://doi.org/10.1109/ICIAI.2019.8850811.




