Russian Federation
The article discusses the application of a methodology for processing and intelligent grouping of multimodal data related to destructive behavior on the Internet. Particular attention is paid to the automated processing of heterogeneous data, including text data, photos and videos, followed by their classification and grouping based on machine learning methods. The purpose of this study is to develop a methodology for processing and intelligent grouping to identify destructive behavior. The methodology includes the stages of preliminary data cleaning and normalization, extracting key features using natural language processing and computer vision. A feature of the approach is the integrated use of methods for processing multimodal data and their grouping by the overall context, and not just by individual features. The result of the processing is a structured presentation of data for further analysis and decision making. The methodology has been tested on real data from social networks. The use of this approach allows you to adapt the processing of large volumes of heterogeneous data from the Internet and improve the quality of their grouping for monitoring tasks and decision-making recommendations.
intelligent grouping, data processing, multimodal data, destructive behavior, social networks, NLP, CV
1. EN 54-7:1994. Sistemy pozharnoj signalizacii. Chast' 7: Dymovye pozharnye izveshchateli; tochechnye izveshchateli po principu kontrolya rasseyannogo i prohodyashchego sveta ili ionizacionnye. URL: https://ru-bezh.ru/uploads/instrukcii/en54/EN%2054-7.pdf (data obrashcheniya: 11.12.2024).
2. GOST R 53325–2012. Tekhnika pozharnaya. Tekhnicheskie sredstva pozharnoj avtomatiki. Obshchie tekhnicheskie trebovaniya i metody ispytanij. URL: https://docs.cntd.ru/document/1200102066 (data obrashcheniya: 11.12.2024).
3. GOST 34698–2020. Izveshchateli pozharnye. Obshchie tekhnicheskie trebovaniya. Metody ispytanij. Dostup iz inform.-pravovogo portala «Garant».
4. Fire Alarm System Market, Share & Growth Analysis Report, 2033. URL: https://www.valuemarketresearch.com/report/fire-alarm-system-market (data obrashcheniya: 11.12.2024).
5. Pozhary i pozharnaya bezopasnost' v 2023 godu: inform.-analit. sb. / V.S. Goncharenko [i dr.]. Balashiha: VNIIPO MChS Rossii, 2024. 110 s.
6. Tanklevskij L.T., Babikov I.A., Tanklevskij A.L. Ob ocenke dostovernosti obnaruzheniya vozgoraniya // Problemy upravleniya riskami v tekhnosfere. 2021. № 3 (59). S. 28–33. EDN JVMNBY.
7. Pireeva V.S., Rahmatullina E.F., Permyakov A.V. Vliyanie koncentracii dymovyh chastic na obnaruzhenie vozgoraniya // Tekhnicheskie i tekhnologicheskie sistemy: materialy XV Mezhdunar. nauch. konf. «TTS-24». Krasnodar, 2024. S. 150–153.
8. Chitram S., Kumar S., Thenmalar S. Enhancing fire and smoke detection using deep learning techniques // Engineering Proceedings. 2024. T. 62. № 1. S. 7. DOI:https://doi.org/10.3390/engproc2024062007.
9. Predicting Fire Alarms in Smoke Detection using Neural Networks / M.W. Attia [et al.] // International Journal of Academic Information Systems Research (IJAISR). 2023. Vol. 7. № 10. P. 26–33.
10. Review Study on Recent Developments in Fire Sensing Methods / S. Sulthana [et al.] // IEEE Access. 2023. Vol. 11. P. 90269–90282. DOI:https://doi.org/10.1109/ACCESS.2023.3306812.
11. Katnikova Yu.S., Borisenko M.E., Lyubskaya O.G. Obzor datchikov pozharnoj signalizacii // Universum: tekhnicheskie nauki. 2021. № 4–1 (85). S. 10–12.
12. Rashoyan I.I. Analiz effektivnosti raboty tochechnyh dymovyh pozharnyh izveshchatelej // Simvol nauki. 2015. № 9–1. S. 111–114.
13. Kapusta N.K., Zvyagincev V.V. Issledovanie rabotosposobnosti populyarnyh modelej dymovyh optiko-elektronnyh pozharnyh izveshchatelej // Bezopasnost'-2021: sb. trudov Vseros. nauch.-prakt. konf. Chita, 2021. S. 112–116.
14. A capacitive particle-analyzing smoke detector for very early fire detection / B. Wang [et al.] // Sensors. 2024. T. 24. № 5. S. 1692. DOI:https://doi.org/10.3390/s24051692.
15. Povyshenie effektivnosti raboty sovremennyh tochechnyh opticheskih dymovyh izveshchatelej / A.I. Kicak [i dr.] // Bezpieczenstwo i Technika Pozarnicza. 2014. T. 36. № 4. S. 125–130. DOI:https://doi.org/10.12845/bitp.36.4.2014.13.



