Russian Federation
The paper addresses the task of prioritizing items in information systems operating under incomplete and changing data. It presents an analysis of existing methods (Analytic Hierarchy Process, Technique for Order of Preference by Similarity to Ideal Solution, heuristics, machine learning) and shows that none of them fully meet the requirements of robustness, adaptability, and interpretability. To address this, the authors propose a new model that automatically evaluates the importance of features, handles missing data, and provides understandable results. The model also adjusts priorities based on task dependencies. A numerical experiment confirms that the model remains stable even with significant data loss. The solution is applicable in help desk systems, project management, digital platforms, and real-time processing environments.
task prioritization, incomplete data, adaptive algorithm, information systems, interpretability, multicriteria analysis
1. Sapunkov A.A., Afanas'eva T.V. Metodika podderzhki prinyatiya resheniya v zadache prioritezacii zaprosov pol'zovatelej v razvivayushchihsya programmnyh produktah // Avtomatizaciya processov upravleniya. 2020. № 1 (59). S. 55–64. DOI:https://doi.org/10.35752/1991-2927-2020-1-5-55-64.
2. Kirana A.T., Putri E.P. Supplier Selection Analysis of Metallic Box Using Fuzzy Analytic Hierarchy Process (AHP) // Physics and Mechanics of New Materials and Their Applications: 2023 International Conference, Surabaya. Rostov-on-Don, Taganrog: Southern Federal University, 2023. P. 50–51.
3. Febrio A., Rachmatullah Sh. Aplikasi pemberian kredit menggunakan metode technique for order preference by similarity to ideal solution (TOPSIS) // Insand Comtech : Information Science and Computer Technology Journal. 2022. Vol. 6. №. 1. DOI:https://doi.org/10.53712/jic.v6i1.1668. EDN QYEEHN.
4. Grudinina V.P. Analiz konkurentosposobnosti vakansij s ispol'zovaniem metodov podderzhki prinyatiya reshenij ELECTRE I i ELECTRE II // Nauka. Tekhnologii. Innovacii: sb. trudov. Novosibirsk, 2015 g. T. 1. S. 58–60. EDN VLVWQN.
5. Kobrinskii B.A., Yankovskaya A.E. The problem of convergence of intelligent systems and their submergence in information systems with a cognitive decision-making component // Otkrytye semanticheskie tekhnologii proektirovaniya intellektual'nyh sistem. 2020. № 4. P. 117–122. EDN ROFNLJ.
6. Smolenceva T.E., Kalach A.V., Trushin S.M. Sovershenstvovanie algoritma upravleniya sortirovkoj vhodnoj dokumentacii v sisteme elektronnogo dokumentooborota // Vestnik Voronezhskogo instituta FSIN Rossii. 2022. № 4. S. 167–176. EDN DIKAOV.
7. Farakhutdinov R.A. Heuristic optimization methods for linear ordering of automata // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2025. Vol. 25. № 2. P. 295–302. DOI:https://doi.org/10.18500/1816-9791-2025-25-2-295-302. EDN ZTYLML.
8. Ivanova A.G., Pavlov L.A. Integraciya dannyh «1S: predpriyatiya» s web-prilozheniyami s ispol'zovaniem REST-interfejsa // Informatika i vychislitel'naya tekhnika: sb. trudov. Cheboksary, 2016. S. 81–84. EDN WQRQBH.
9. Rostovcev P.S. Perestanovochnyj kriterij dlya analiza vzveshennoj vyborki // Sociologiya: metodologiya, metody, matematicheskie modeli. 2002. № 15. S. 135–157. EDN PEYIPX.
10. Pudova N.V., Nikitin V.V. Analiz znachenij koefficienta rangovoj korrelyacii Spirmena // Ekonomicheskij analiz: teoriya i praktika. 2004. № 3 (18). S. 52–56. EDN HYSOKB.



