Russian Federation
Russian Federation
Russian Federation
Russian Federation
The conducted laboratory studies confirmed the high efficiency of the developed method for reducing the evaporation rate of liquefied natural gases. The use of liquid nitrogen as a safe model substance provided reliable quantitative assessments of evaporation dynamics without risk to the researchers. The experiments established that the application of basalt fabric with deposited powder coatings significantly reduces the heat flux to the surface of the evaporating liquid, creating an additional thermal insulation barrier. This, in turn, reduces the formation of flammable vapor-air mixtures and lowers the probability of their ignition in emergency situations. A promising direction for further research is the optimization of the powder material composition to enhance their thermal insulation properties and resistance to various operating conditions. The development of the proposed technology will open up opportunities for creating more effective and affordable methods for emergency liquefied natural gases spill response, which will contribute to a significant increase in the level of industrial safety during the transportation and storage of liquefied gases.
liquid nitrogen, basalt fabric, powder materials, thermal insulation barrier, emergency response, evaporation rate
1. Samigullin G.H., Evloev Z.B., SHarapov S.V. Sravnitel'nyj analiz chrezvychajnyh situacij na ob"ektah po proizvodstvu, hraneniyu, otgruzke szhizhennogo prirodnogo gaza i szhizhennogo uglevodorodnogo gaza // Problemy upravleniya riskami v tekhnosfere. 2024. № 4 (72). S. 81–92.
2. Perspektivy nauchnyh issledovanij svojstv vozdushno-mekhanicheskoj peny dlya lokalizacii i likvidacii goreniya razlivov szhizhennogo prirodnogo gaza / M.V. Aleshkov [i dr.] // Pozhary i chrezvychajnye situacii: predotvrashchenie, likvidaciya.. 2022. № 1. S. 12–20.
3. Sravnenie sposobov povysheniya adgezii mezhdu butadienovym elastomerom i bazal'tovoj tkan'yu / Kopyrin M.M. [i dr.] // Polzunovskij vestnik. 2022. № 4-2. S. 109–117.
4. Effektivnyj sposob polucheniya nanokremnezema iz kvarcevogo peska / D.V.K. Nguen [i dr.] // Izvestiya vysshih uchebnyh zavedenij. Stroitel'stvo. 2021. № 2 (746). S. 103–111.
5. Procenko T.V. Issledovanie processov podavleniya ispareniya szhizhennogo azota primeneniem modificirovannyh vozdushno-mekhanicheskih pen i poroshkovyh sostavov // Sibirskij pozharno-spasatel'nyj vestnik. № 1. 2025. S. 96–106.
6. A new experiment for investigating evaporation and condensation of cryogenic propellants / K. Bellur [et al.] // Cryogenics. 2016. T. 74. p. 131–137.
7. Analysis on the effects of high expansion foam on evaporation rate of the LNG / X. Guo [et al.] // Safety Science. 2021. Vol. 137. P. 137.
8. Povyshenie energoeffektivnosti sistem ohlazhdeniya energonasyshchennogo oborudovaniya putem smeshcheniya krizisa teploobmena vtorogo roda v oblast' bolee vysokih temperatur / D.V. Feoktistov [i dr.] // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2023. T. 334. № 4. S. 72–88.
9. Improving the stability of high expansion foam used for LNG vapor risk mitigation using exfoliated zirconium phosphate nanoplates / P. Krishnan [et al.] // Process Safety and Environmental Protection. 2019. P. 48–58.
10. Pelekh M.T., Simonova M.A. Osobennosti lokalizacii i likvidacii pozharov na skladah SUG i SPG v rajonah Krajnego Severa // XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2021. T. 10, № 2(54). S. 216–221.




