Abstract and keywords
Abstract (English):
This article examines the environmental and fire safety aspects of fire engine powertrains equipped with sophisticated exhaust gas aftertreatment systems. The objective of this study is to develop a comprehensive approach to assessing and ensuring the safety of fire engine powertrains based on an analysis of actual operating conditions and the adaptation of diagnostic methods. The study utilizes theoretical modeling, a full-scale experiment, and statistical analysis. Two critical operating modes are formalized: prolonged idling (R1) and operation with a significant boost level with the fire engine stationary to drive the pump (R2). A one-dimensional non-stationary model of the catalytic converter is adapted to predict thermal conditions. The results demonstrate that the R2 mode creates an extreme thermal load on the fuel-catalytic system. Modeling reveals that when the mixture is enriched, the temperature of the ceramic substrate in the axial zone of the catalytic converter can reach 950–980 °C, leading to thermal failure. The inadequacy of standard control methods has been experimentally proven: in the R2 mode, critical excesses in pollutant and hydrocarbon emissions and the temperature of the catalytic converter housing (up to 845 °C) were recorded, undetectable at idle. A direct link was established between the use of low-quality fuel (increased content of sulfur, aromatic hydrocarbons, water) and the degradation of the fuel-catalytic system, accompanied by its overheating. Scientific novelty lies in the identification of a consistent relationship between the load-speed cycles of fire trucks, the thermal state of the fuel-catalytic systems and the risk of fire, as well as obtaining information on its serviceability by testing the diesel engine in free acceleration mode. The practical significance lies in recommendations for fire departments, including the implementation of the free acceleration method for diagnosing the fire and environmental safety of the fuel systems of fire trucks with monitoring the temperature of the catalytic converter; setting temperature thresholds to ensure fire-safe operation of the catalytic converter; tightening fuel quality control; adjusting maintenance schedules to account for operating time under extreme conditions.

Keywords:
fire trucks, power unit, environmental safety, fire safety, catalytic converter, operating mode, diagnostics, thermal regime, fuel quality, maintenance
Text
Text (PDF): Read Download
References

1. Olabi A.G., Maizak D., Wilberforce T. Review of the regulations and techniques to eliminate toxic emissions from diesel engine cars // Science of the Total Environment. 2020. Vol. 748. P. 141249. DOI:https://doi.org/10.1016/j.scitotenv.2020.141249.

2. Sacuk I.V. Teoreticheskaya model' diagnostirovaniya silovyh ustanovok pozharnyh avtomobilej po kriteriyam konstruktivnoj (pozharnoj) bezopasnosti // Sibirskij pozharno-spasatel'nyj vestnik. 2024. T. 32. № 1. S. 160–168. DOI:https://doi.org/10.34987/vestnik.sibpsa.2024.66.36.017.

3. Lozhkin V.N., Lakeev D.A., Saratov D.N. Diagnostirovanie toplivnyh i ekologicheskih pokazatelej dvigatelej pozharnyh avtomobilej primenitel'no k usloviyam ekspluatacii // Nauchno-analiticheskij zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii». 2013. № 3. S. 44–51.

4. A comprehensive review on water-emulsified diesel fuel: chemistry, engine performance and exhaust emissions / A. Jhalani [et al.] // Environmental Science and Pollution Research. 2019. Vol. 26. P. 4570–4587. DOI:https://doi.org/10.1007/s11356-018-3958-y.

5. Grebennikov A.S., Grebennikov S.A., Kosareva A.V. Neravnomernost' i ciklichnost' izmeneniya zatrat na obespechenie rabotosposobnosti avtomobilya // Vestnik mashinostroeniya. 2017. № 9. S. 3–11.

6. Gavkalyuk B.V., Lozhkin V.N. Povyshenie effektivnosti okislitel'nogo kataliza nejtralizatora pozharnoj avtocisterny na rezhimah podachi vody/peny // Problemy upravleniya riskami v tekhnosfere. 2025. № 2 (74). S. 130–138. DOI:https://doi.org/10.61260/1998-8990-2025-2-130-138.

7. El-Seesy A. I., He Z., Kosaka H. Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures // Energy. 2021. Vol. 214. P. 118972. DOI:https://doi.org/10.1016/j.energy.2020.118972.

8. Devyanina A.S. Ocenka vliyaniya neravnomernosti podachi topliva na pokazateli dizelya // Traktory i sel'hozmashiny. 2017. № 5. S. 5–10.

9. Povyshenie effektivnosti tekhnicheskoj ekspluatacii avtotransportnyh sredstv po rezul'tatam issledovaniya ih ekspluatacionnyh pokazatelej / E.V. Kondrashova [i dr.] // Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta. 2015. № 4 (47). S. 80–86.

10. Gavkalyuk B.V., Lozhkin V.N., Smirnov A.S. Teoriya i praktika obespecheniya bezopasnosti primeneniya v usloviyah chrezvychajnyh situacij silovyh ustanovok pozharnyh avtomobilej 4–5 pokolenij // Problemy upravleniya riskami v tekhnosfere. 2023. № 2 (66). S. 8–15.

11. Lihanov V.A., Lopatin O.P., Kozlov A.N. Modelirovanie sazheobrazovaniya v cilindre dizelya // Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki. 2019. T. 25. № 1. S. 47–59. DOI:https://doi.org/10.18721/JEST.25105.

12. Omidvarborna H., Kumar A., Kim D.-S. Recent Studies on Soot Modeling for Diesel Combustion // Renewable and Sustainable Energy Reviews. 2015. Vol. 48. P. 635–647. DOI:https://doi.org/10.1016/j.rser.2015.04.019.

13. Sazheobrazovanie v DVS (po materialam kongressa CIMAC) // Dvigatelestroenie. 2021. № 3 (285). S. 39–46.

14. The effect of oxygenated fuel properties on diesel spray combustion and soot formation / W. Park [et al.] // Combustion and Flame. 2016. Vol. 180. P. 276–283. DOI:https://doi.org/10.1016/j.combustflame.2016.02.026.

15. Vliyanie pokazatelej toplivopodachi na rabochij process dizelya pri dostizhenii davleniya vpryskivaniya 250 MPa / M.G. Shatrov [i dr.] // Dvigatelestroenie. 2023. № 4 (294). S. 42–55. DOI:https://doi.org/10.18698/jec.2023.4.42-55.

16. O gigienicheskoj znachimosti spektral'nogo soderzhaniya shuma avtomobilej / V.O. Krasovskij [i dr.] // Sovremennye problemy nauki i obrazovaniya. 2017. № 2. S. 46.

17. Zorin V.A., Pegachkov A.A. Reliability and Risk Assessment of Machine Building Items According to Diagnostics Results // Journal of Machinery Manufacture and Reliability. 2020. Vol. 49. № 9. P. 811–816. DOI:https://doi.org/10.3103/S1052618820090149.

18. Opyt obespecheniya ekologicheskoj bezopasnosti ekspluatacii kar'ernogo oborudovaniya s dvigatelyami vnutrennego sgoraniya / S.I. Protasov [i dr.] // Bezopasnost' truda v promyshlennosti. 2017. № 9. S. 66–70. DOI:https://doi.org/10.24000/0409-2961-2017-9-66-70.

19. Gusakov S.V., Markov V.A., Ahmadnia M. Raschetnye issledovaniya avtomobil'nogo dvigatelya na rezhimah ispytatel'nyh ciklov // Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie. 2016. № 1 (670). S. 57–64.

20. Ogorodnov S.M., Tihomirov A.N., Maleev S.I. Ocenka vozmozhnosti ispol'zovaniya analiticheskih metodov pri issledovanii toplivnoj ekonomichnosti avtomobilej // Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie. 2015. № 2 (659). S. 53–62.

Login or Create
* Forgot password?