Russian Federation
Russian Federation
UDC 614.849
The problems of cooling fire alarm systems to ensure the stable operation of electronic components in fire alarm devices have been analyzed. The problem of numerical modeling of a pulsating heat pipe with a closed circuit in the form of two turns with the same dimensions of evaporative, adiabatic and condenser sections is set. A calculation grid and a numerical implementation of a closed-loop pulsating heat pipe model using a Hypermesh software-modeling complex are proposed. It was found that under certain conditions the best performance is demonstrated at a condenser temperature of 10 oC. It was concluded that the coolant phase fraction contours demonstrate the presence of a liquid component and a possible steam plug inside the heat pipe with the laminar nature of the coolant movement, and the value of the Nusselt criterion for the studied temperature range confirms the laminar nature of the coolant movement inside the pulsating heat pipe with a closed circuit.
fire alarm, heat pipe, pulse heat pipe, closed loop, phase change
1. Antipov E.G. Administrativno-pravovoe regulirovanie gosudarstvennogo pozharnogo nadzora, osushchestvlyaemogo MCHS Rossii, v otnoshenii ob"ektov zashchity s massovym prebyvaniem lyudej: dis. …. kand. yurid. nauk. N. Novgorod: Nacional'nyj issledovatel'skij Nizhegorodskij gosudarstvennyj universitet im. N.I. Lobachevskogo, 2020. 263 s.
2. Glushko V.S., Sineshchuk Yu.I., Terekhin S.N. Integrirovannaya sistema rannego obnaruzheniya pozhara // Nauchno-analiticheskij zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii». 2013. № 3. S. 40–43.
3. Korolev D.S., Minkin D.Yu. Metodika raboty integrirovannoj cifrovoj sistemy pozharnoj avtomatiki s gazoanaliziruyushchim oborudovaniem // Problemy upravleniya riskami v tekhnosfere. 2021. № 1 (57). S. 32–39.
4. Fazul'zyanov K.R., Gil'fanov K.H. Issledovanie osobennostej postroeniya adresno-analogovoj sistemy pozharnoj signalizacii «Rubezh» // Innovacionnoe razvitie sovremennoj nauki: problemy i perspektivy: materialy Mezhdunar. (zaochnoj) nauch.-prakt. konf. Neftekamsk: Mir nauki, 2023. S. 11–14. EDN FRPTEK.
5. Astahov V.V., Kirillova G.V. Povyshenie pozharnoj bezopasnosti predpriyatiya s vnedreniem adresno-analogovoj sistemy pozharnoj signalizacii i upravleniya «Yunitronik 496» // Problemy bezopasnosti rossijskogo obshchestva. 2020. № 1 (29). S. 23–29. EDN CDSTMI.
6. Barkovskij S.A. Sistema ohranno-pozharnoj signalizacii s ispol'zovaniem tekhnologii GSM // Sovremennye problemy radiotekhniki i telekommunikacij «RT-2015»: materialy XI Mezhdunar. molodezhnoj nauch.-tekhn. konf. / pod red. A.A. Savochkina. Sevastopol': Sevastopol'skij gosudarstvennyj universitet, 2015. S. 234. EDN XTTNAF.
7. Structure of heat pipe: U.S. Patent Application No. 5,219,020 / Akachi H. 1990.
8. Seryakov A.V., Kon'kin A.V., Alekseev A.P. Pul'siruyushchie izmeneniya tolshchiny i temperatury plenki kondensata v korotkih teplovyh trubah pri zakruchivanii parovogo potoka // XIII seminar vuzov po teplofizike i energetike: tezisy dokladov Vseros. nauch. konf. Nizhnij Novgorod: Nizhegorodskij gosudarstvennyj tekhnicheskij universitet im. R.E. Alekseeva, 2023. S. 45–46. EDN TILAXF.
9. Simulation of Refrigerant Flow Boiling in Serpentine Tubes / H.L. Wu [et al.] // International Journal of Heat and Mass Transfer. 2017. № 50 (5–6). P. 1186–1195.
10. Valueva E.P. Vliyanie teplovogo granichnogo usloviya na stenke ploskogo kanala na teplootdachu pri laminarnom pul'siruyushchem techenii v kvazistacionarnom rezhime // Sovremennye problemy teplofiziki i energetiki: materialy IV Mezhdunar. konf. M.: Nacional'nyj issledovatel'skij universitet MEI, 2024. S. 42–43. EDN QFTHYV.
11. Hansen N., Versteeg J., Michna G.J. Effect of Condenser Temperature on Pulsating Heat Pipe Performance // Proceedings of the ASME 2013 Heat Transfer Summer Conf. Minneapolis, MN, USA, 2013. P. 1–6.
12. Simulation and Analysis on Heat Transfer Performance of Oscillating Heat Pipe with Single and Double Passageway / E. Jiaqiang [et al.] // Advanced Materials Research. 2012. № 516–517. P. 433–37.
13. Simulation of a Miniature Oscillating Heat Pipe in Bottom Heating Mode Using CFD with Unsteady Modeling / Z. Lin [et al.] // International Journal of Heat and Mass Transfer. 2013. № 57 (2). P. 642–656. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.007.
14. Noh H.Yu., Kim S.J. Numerical Simulation of Pulsating Heat Pipes: Parametric Investigation and Thermal Optimization // Energy Conversion and Management. 2020. № 203. P. 112237. DOI:https://doi.org/10.1016/j.enconman.2019.112237.
15. Pastuhov V.G., Majdanik Yu.F. Kombinirovannaya teploperedayushchaya sistema na osnove pul'siruyushchej i konturnoj teplovyh trub // Reshetnevskie chteniya. 2016. T. 1. S. 144–146. EDN XEADVD.
16. Choi J, Zhang Yu. Numerical Simulation of Oscillatory Flow and Heat Transfer in Pulsating Heat Pipes with Multi-Turns Using OpenFOAM // Numerical Heat Transfer. Part A: Applications. 2020. № 77 (8). P. 761–781. DOI:https://doi.org/10.1080/10407782.2020.1717202.
17. Metody i sredstva informacionno-operacionnoj podderzhki teplotekhnicheskih raschetov v reshenii zadach pozharnoj bezopasnosti / A.A. Kuz'min [i dr.]. SPb.: S.-Peterb. un-t GPS MCHS Rossii, 2023. 196 s. ISBN 978-5-907724-23-5. EDN FBYRNF.
18. Sedighi E, Amarloo A, Shafii B. Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section // International Journal of Heat and Mass Transfer. 2018. № 126. P. 431–441. DOI:https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.047.




