Transport systems of the N.S. Solomenko institute of transport problems of the Russian academy of sciences (Laboratory of safety problems of transport systems, head of the laboratory)
Russian Federation
UDC 614.842.6
UDC 614.844.2
The article discusses the design features of high-rise warehouses as an important component of logistics chains for product movement. It provides a classification of warehouses, their design features, and regulatory documents governing their operation. The article also addresses the issue of fire hazards in high-rise warehouses, taking into account the specific characteristics of fire development and its elevated rank. The article demonstrates the potential for fire containment and suppression using automatic water-based fire extinguishing systems with forced activation. It establishes that the problem of fire suppression in high-rise warehouses requires a comprehensive approach, considering both the operation of automatic systems and the subsequent actions of arriving fire departments. The main provisions of the fire-extinguishing plan for a high-rise warehouse and the features of fire-extinguishing tactics are presented. It is concluded that it is expedient to develop a special regulatory document – recommendations for extinguishing fires in high-rise warehouses, and its structure is presented.
high-rise warehouse, fire, automatic water fire extinguishing system, fire extinguishing tactics
1. Terebnev V.V., Podgrushnyj A.V. Pozharnaya taktika: Osnovy tusheniya pozharov: ucheb. posobie. M.: Akademiya GPS MCHS Rossii, 2012. 322 s.
2. Karlsson B., Quintiere J. G. Enclosure Fire Dynamics. CRC Pres. 2000. P. 316.
3. Yu H.-Z. Transient Plume Influence in Measurement of Convective Heat Release Rates of Fast-Growing Fires Using a Large-Scale Fire Products Collector // J. Heat Transfer. 1990. № 112. P. 186–191.
4. Yu H.-Z, Stavrianidis P. The Transient Ceiling Flows of Growing Rack Storage Fires // Cox G., Langford B. (Ed.), Fire Safety Science – Proc. Third Int. Symp., IAFSS. 1991. P. 281–290.
5. Analysis of a Run-Away High Rack Storage Fire / N.J. Alvares [et al.]; T. Kashiwagi (Ed.) // Fire Safety Science – Proc. Fourth Int. Symp. 1994. P. 1267–1278.
6. Ingason H. Heat Release Rate of Rack Storage Fires, Proc. 9th Interflam 2001 // Fire Science & Engineering Conference. 2001. P. 731–740.
7. Ingason H. In-Rack Fire Plumes / D.D. Evans (Ed.) // Fire Safety Science – Proc. Fifth Int. Symp. 2003. P. 333–344.
8. Ingason H. Effects of Flue Spaces on the Initial In-Rack Plume Flow / D.D. Evans (Ed.) // Fire Safety Science – Proc. Seventh Int. Symp. 2003. P. 235–246.
9. Chislennoe modelirovanie rasprostraneniya plameni po diskretnoj sovokupnosti goryuchih materialov / E.S. Markus [i dr.] // Pozharovzryvobezopasnost'. 2019. T. 28. № 4. S. 29–41.
10. Arakcheev A.V. Low pressure water-mist nozzle with a swirl worm screw inserts // MATEC Web of Conferences. 2018. № 245 (21). P. 11001. DOI:https://doi.org/10.1051/matecconf/201824511001.
11. Arakcheev A.V. Development of Methods for Instrumental Diagnostics of Control Devices for Fire Alarm Systems // IOP Conference Series: Earth and Environmental Science. 2019. № 272. P. 032013. DOIhttps://doi.org/10.1088/1755-1315/272/3/032013.
12. Raschyotnaya ocenka geometricheskih parametrov sprinklernyh ustanovok vodyanogo pozharotusheniya vysotnyh stellazhej / S.N. Kopylov [i dr.] // Pozharnaya bezopasnost'. 2020. № 2 (99). S. 62–69.
13. Arakcheev A.V., Tanklevskij A.L. Ispol'zovanie tekhnologii prinuditel'nogo puska sprinklerov dlya zashchity mnogourovnevyh avtostoyanok // Algoritm bezopasnosti. 2016. № 3. S. 32–33.
14. Arakcheev A.V. Instrumental'nyj kontrol' linij sistem opoveshcheniya i upravleniya evakuaciej // XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2018. T. 7. № 3 (43). S. 118–122.
15. ONR CEN/TS 14972:2011. Ortsfeste Brandbekampfungsanlagen – Feinspruh Loschanlagen // Planung und Einbau; Deutsche Fassung. Belgium, Brussel, Europaisches Komitee fur Normung, 2011. S. 9.
16. NFPA 750. Standart on Water Mist Fire Protection Systems. Las Vegas, An International Codes and Standarts Organization, National Fire Protection Association, 2015. 88 p.
17. Improvement of the method of hydraulic calculation of sprinkler automatic fire extinguishing units / A.M. Oshchepkov [et al.] // Journal of Civil Protection. 2021. Vol. 5. № 1. DOI:https://doi.org/10.33408/2519-237X.2021.5-1.67.
18. Vliyanie algoritma vzaimodejstviya avtomaticheskih ustanovok pozharotusheniya i protivodymnoj ventilyacii na vremya blokirovaniya evakuacionnyh putej i effektivnost' lokalizacii pozhara v pomeshcheniyah vysokostellazhnogo hraneniya / A.V. Surikov [i dr.] // Vestnik Universiteta grazhdanskoj zashchity MCHS Belarusi. 2021 T. 5. № 4. S. 387–401. DOI: https://doi.org/10.33408/2519-237X.2021.5-4.387.
19. Large-scale fire suppression modeling of corrugated cardboard boxes on wood pallets in rack-storage configurations / N. Ren [et al.] // Fire Safety Journal. 2017. Vol. 91. P. 695–704.
20. Application of a simplified pyrolysis model to predict fire development in rack storage facilities / E. Markus [et al.] // Journal of Physics: Conference Series. 2018. Vol. 1107. Article No. 042012. P. 042012. DOI:https://doi.org/10.1088/1742-6596/1107/4/042012.
21. Trapp A.C., Rangwala A.S. Analyzing the Impact of In-Rack Sprinklers in a Warehouse Fire: A Demonstration of the Role Optimization has in mitigating damage // Fire Safety Journal. 2015. № 73. P. 55–62. DOI:https://doi.org/10.1016/j.firesaf.2015.03.002.
22. Numerical simulation of fire growth on corrugated cardboard commodities in three-tier-high rack storage arrays / P. Chatterjee [et al.] // Proc. 13th Int. Conf. Interflam. UK, 2013. P. 163–173.
23. Simulating Sprinkler Based Rack Storage Fire Suppression under Uniform Water Application / K.V. Meredith [et al.] // Proc. 7th Int. Seminar on Fire and Explosion Hazards. 2013. P. 511–520. DOI:https://doi.org/10.3850/978-981-07-5936-0_07-08.
24. Numerical Simulation of Sprinkler Suppression of Rack Storage Fires / Yi. Wang [et al.] // Fire Safety Science – Proceedings of the Eleventh International Symposium. 2014. P. 1170–1183. DOI:https://doi.org/10.3801/iafss.fss.11-1170.
25. Yan Z., Holmstedt G. CFD Simulation of Upward Flame Spread over Fuel Surface // Fire Safety Science – Proceedings of the Fifth International Symposium. 1997. P. 345–356. DOI:https://doi.org/10.3801/iafss.fss.5-345.
26. Lewis M.J., Rubini P.A., Moss J.B. Field Modelling of Non-Charring Flame Spread // Fire Safety Science – Proceedings of the Sixth International Symposium. 2000. P. 683–694. DOI:https://doi.org/10.3801/iafss.fss.6-683.
27. Numerical Study of Radiative Heat Transfer Effects on a Complex Configuration of Rack Storage Fire / K. Guedri [et al.] // Energy. 2011. № 36. P. 2984–2996. DOI:https://doi.org/10.1016/j.energy.2011.02.042.
28. Chaos M., Khan M.M., Dorofeev S.B. Pyrolysis of corrugated cardboard in inert and oxidative // Proceedings of the Combustion Institute. 2013. № 34. P. 2583–2590. DOI:https://doi.org/10.1016/j.proci.2012.06.031.
29. Čekon, M., Struhala, K., Slávik, R. Cardboard-Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and Life-Cycle Performance // Journal of Renewable Materials. 2017. Vol. 5 (suppl. 1). P. 84–93. DOI:https://doi.org/10.7569/JRM.2017.634135.
30. Quintiere J.G. Principles of Fire Behavior. Delmar Publishers, NY, 1997. 258 s.




