SCIENTIFIC BASIS FOR MODIFICATION OF FIRE EXTINGUISHING AND PROTECTIVE COMPOSITIONS FOR OIL AND GAS FACILITIES
Abstract and keywords
Abstract (English):
The article presents a scientific justification for technologies for modifying fire extinguishing agents and protective compounds for oil and gas facilities using carbon nanostructures as modifiers. Experimental and computational methods have shown that the addition of modifiers to water-containing fire extinguishing compositions at a concentration of 0,75 vol. % reduces the extinguishing time of a model Class B fire, decreases the mass burnout rate by 75 %, and reduces the critical fire extinguishing agent delivery rate by 78 % compared to unmodified compositions. This result is due to enhanced heat removal from the combustion zone and oxygen chemisorption by carbon nanoparticles. When modifying intumescent fire-retardant compositions, a reinforcing framework of carbon nanostructures is formed, facilitating the formation of fine-cell foam coke with reduced thermal conductivity, ensuring an extension of the thermal protection effect of the fire-retardant coating by 45–61 %. A feasibility study confirms the cost-effectiveness of the modification technology, with a modifier cost no higher than 200 rubles/g and a carbon nanostructure concentration of 0,2–0,5 vol %. An integrated scientific approach, combining experimental and computational research methods, provides a scientific basis for the design of cost-effective, high-performance fire extinguishing and fire-retardant compounds for oil and gas facilities.

Keywords:
carbon nanostructures, fire extinguishing, fire protection efficiency, foam coke, feasibility study, nanomodification, astralenes
Text
Text (PDF): Read Download
References

1. Luk'yanov D.E. Pozharnaya bezopasnost' v processe pererabotki neftegazovyh produktov: sovremennye vyzovy i resheniya // Vestnik nauki. 2025. T. 4. № 4 (85). S. 908–914.

2. Ivanov A.V., Dali F.A., Shidlovskij G.L. Elektrofizicheskij metod uluchsheniya ognetushashchih i teploizolyacionnyh harakteristik veshchestv na osnove vody dlya teplovoj zashchity rezervuarov s nefteproduktami // Bezopasnost' zhiznedeyatel'nosti. 2020. № 3. S. 25–29.

3. Nanotekhnologii i pozharnaya bezopasnost' / S.N. Kopylov [i dr.] // Pozharnaya bezopasnost'. 2011. № 3. S. 71–74.

4. Olenick S.M., Carpenter D.J. An updated international survey of computer models for fire and smoke // Journal of Fire Protection Engineering. 2003. Vol. 13. Iss. 2. P. 87–110. DOI:https://doi.org/10.1177/1042391503013002001.

5. Olawoyin R. Nanotechnology: The future of fire safety // Safety science. 2018. Vol. 110. P. 214–221. DOI:https://doi.org/10.1016/j.ssci.2018.08.016.

6. Miladinović L. Application of nanotechnology in the development of personal protective equipment for firefighters and rescuers // Annual conference on Challenges of Contemporary Higher Education. Kopaonik, Serbia, 2025. P. 674–683.

7. Nanotechnology safety in the marine industry / H.K. Megbenu [et al.] // Nanotechnology Safety. Elsevier, 2025. Vol. P. 229–249. DOI:https://doi.org/10.1016/j.ijft.2024.100583.

8. Mbamalu E.E., Chioma U.E., Epere A. Applications of fire retardant polymer composites for improved safety in the industry: a review // Proceedings of the Indian National Science Academy. 2025. Vol. 91. No. 2. P. 415–433. DOI:https://doi.org/10.1016/B978-0-443-15904-6.00018-6.

9. Issledovanie ekspluatacionnyh harakteristik ognezashchitnyh pokrytij na osnove epoksidnyh smol, modificirovannyh astralenami / A.V. Ivanov [i dr.] // Pozharovzryvobezopasnost'. 2020. T. 29. № 1. S. 55–68. DOI:https://doi.org/10.18322/PVB.2020.29.01.55-68.

10. Investigation of extinguishment process of liquid hydrocarbon flames by aqueous suspensions of astralenes / A.N. Ponomarev [et al.] // Fire Technology. 2021. T. 57. No. 4. P. 2061–2075. DOI:https://doi.org/10.1007/s10694-021-01094-1.

11. Ivanov A.V. Tushenie model'nyh ochagov klassa «V» nanomodificirovannymi ognetushashchimi sostavami: zakonomernosti i effekty // Tekhnosfernaya bezopasnost'. 2022. № 4 (37). S. 34–44.

12. Nanotechnology in fire protection – application and requirements / A. Rabajczyk [et al.] // Materials. 2021. Vol. 14. No. 24. P. 7849. DOI:https://doi.org/10.3390/ma14247849.

13. Integration of industry 4.0 technologies in fire and safety management / P. Negi [et al.] // Fire. 2024. Vol. 7. No. 10. P. 335. DOI:https://doi.org/10.3390/fire7100335.

14. Aprobaciya obrazcov tkanej, modificirovannyh uglerodnymi nanostrukturami, v sostave boevoj odezhdy pozharnogo v ramkah opytno-issledovatel'skih uchenij «Bezopasnaya Arktika-2023» / O.A. Moskalyuk [i dr.] // Pozharnaya bezopasnost': sovremennye vyzovy. Problemy i puti resheniya. 2023. S. 163–168.

15. Koval'chuk M.V., Narajkin O.S., Yacishina E.B. Konvergenciya nauk i tekhnologij – novyj etap nauchno-tekhnicheskogo razvitiya // Voprosy filosofii. 2013. № 3. S. 3–11.

16. Kiseleva V.S., Ivanov A.V. Aprobaciya ognetushashchego sostava v usloviyah nizkih temperatur s ispol'zovaniem pozharnoj tekhniki // Aktual'nye problemy pozharnoj bezopasnosti, preduprezhdeniya i likvidacii chrezvychajnyh situacij. 2024. S. 107–110.

17. Gorenie geptana v model'nom rezervuare / D.A. Korol'chenko [i dr.] // Pozharovzryvobezopasnost'. 2015. T. 24. №. 2. S. 67–70.

18. Gorshkov V.I. Tushenie plameni goryuchih zhidkostej: monografiya. M.: Pozhnauka, 2007. 267 s.

19. Dumilin A.I. Parametry tusheniya plameni goryuchih zhidkostej raspylennoj vodoj // Pozharovzryvobezopasnost'. 2013. T. 22. № 4. S. 85–90.

20. Adsorbciya kisloroda fullerenami i uglerodnymi nanostrukturami / V.P. Belousov [i dr.] // Zhurnal fizicheskoj himii. 2007. T. 81. № 10. S. 1847–1855.

21. Eremina T.Yu. Modelirovanie i ocenka ognezashchitnoj effektivnosti vspuchivayushchihsya ognezashchitnyh sostavov // Pozharovzryvobezopasnost'. 2003. T. 12. № 5. S. 22–29.

22. Fisenko Yu.V. Investirovanie innovacionnoj deyatel'nosti v sfere nanotekhnologij // Intellektual'naya sobstvennost'. Promyshlennaya sobstvennost'. 2011. № 5. S. 62–70.

23. Juas B., Mattsson B. Economics of fire technology // Fire Technology. 1994. Vol. 30. No. 4. P. 468–477. DOI:https://doi.org/10.1007/BF01039945.

24. Bobkov S.A., Baburin A.V., Komrakov P.V. Fiziko-himicheskie osnovy razvitiya i tusheniya pozharov: ucheb. posobie. M.: Akademiya GPS MCHS Rossii, 2014. 210 s.

25. Androsov A.S., Begishev I.R., Saleev E.P. Teoriya goreniya i vzryva: ucheb. M.: Akademiya GPS MCHS Rossii, 2015. 248 s.

26. Al-Mayman S.I., Al-Abbadi N.M., Atieh M.A. Thermal oxidation kinetic of carbon nanotubes (CNTs) // Arabian Journal for Science and Engineering. 2014. T. 39. № 2. S. 621–630. DOI:https://doi.org/10.1007/s13369-013-0689-8.

27. Termodinamicheskoe podobie mnogoslojnyh konicheskih nanotrubok i grafita / G.Ya. Kabo [i dr.] // Sviridovskie chteniya. 2015. S. 60–67.

Login or Create
* Forgot password?