Russian Federation
Russian Federation
Russian Federation
Abstract. Compliance with the requirements for the safe operation of explosion- and fire-hazardous facilities necessitates a comprehensive assessment of the possibility of progressive (cascade) development of a fire-hazardous situation at the protection facility. In particular, this problem is relevant for oil storage facilities and oil depots, where a significant amount of oil and petroleum products is stored and handled. In addition to the existing probabilistic methods for assessing the possibility of developing emergency situations on the domino principle, a computational method for assessing the possibility of emergency depressurization of a gasoline storage tank in fire conditions was proposed. This article presents one of the ways to simulate a fire-hazardous situation, calculations are made to determine the strength of oil product storage tanks. And also a model was built showing under what circumstances and characteristics the tank will ignite.
fire hazard situation, cascade development, vertical steel tank, gasoline storage, finite element model
1. Shvyrkov S.A. Pozharnyj risk pri kvazimgnovennom razrushenii neftyanogo rezervuara: monografiya. M.: Akad. GPS MCHS Rossii, 2015. 289 s.
2. STO Gazprom 2-1.1-356-2009. Metodicheskie ukazaniya po povysheniyu ustojchivosti tekhnologicheskogo oborudovaniya proizvodstvennyh ob"ektov predpriyatij OAO «Gazprom» k vozdejstviyu pozharov i vzryvov i predotvrashcheniyu kaskadnyh effektov. M., 2009.
3. Metodika ocenki pozharobezopasnyh rasstoyanij pri proektirovanii promyshlennyh predpriyatij. M.: Izd-vo «Federal'noe avtonomnoe uchrezhdenie «Federal'nyj centr normirovaniya, standartizacii i ocenki sootvetstviya v stroitel'stve», 2016. 225 s.
4. Belov L.G. Avtomatizirovannoe prognozirovanie riska kaskadnyh tekhnogennyh proisshestvij // Strategiya grazhdanskoj zashchity: problemy i issledovaniya. 2013. T. 3. № 1 (4). S. 13-23.
5. Fedoryan A.V., Poda D.V., Bidak E.V. Raschetnoe obosnovanie rasstoyaniya mezhdu vertikal'nymi stal'nymi rezervuarami hraneniya LVZH s uchetom parametra nagreva stenki ot pozhara // Tekhnosfernaya bezopasnost'. Sovremennye realii. 2018. S. 25-34.
6. Ob utverzhdenii rukovodstva po bezopasnosti «Metodicheskie osnovy po provedeniyu analiza opasnostej i ocenki riska avarij na opasnyh proizvodstvennyh ob"ektah»: prikaz Rostekhnadzora ot 11 apr. 2016 g. № 144. Dostup iz sprav.-pravovogo portala «Garant».
7. Shvyrkov A.S. Normirovanie trebovanij pozharnoj bezopasnosti k geometricheskim parametram ograzhdenij rezervuarov tipa «stakan v stakane»: dis. … kand. tekhn. nauk. M., 2021. 222 s.
8. Fizicheskoe i imitacionnoe modelirovanie vozdejstviya pozhara proliva na truboprovodnuyu obvyazku kolonnogo apparata / R.R. Tlyasheva [i dr.] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016. T. 18. № 4-6. S. 1080-1090.
9. Issledovanie prochnosti elementov metallokonstrukcij, podvergshihsya vozdejstviyu povyshennyh temperatur pri pozhare / I.A. Kalinin [i dr.] // Sovremennye tekhnologii obespecheniya grazhdanskoj oborony i likvidacii posledstvij chrezvychajnyh situacij. 2017. T. 1. № 1 (6). S. 104-106.
10. Christopher W. Schmidt, Steve A. Symes. The analysis of burned human remains. Academic Press. 2018. P. 2.
11. Sudheer S., Prabhu S.V. Measurement of flame emissivity of gasoline pool fires. 2016.
12. Zigel' R., Hauel Dzh. Teploobmen izlucheniem. M.: Mir, 1975. 935 s.
13. Engineering ToolBox, (2003). Liquids - Kinematic Viscosities. [online] Available at. URL: https://www.engineeringtoolbox.com/kinematic-viscosity-d_397.html (data obrashcheniya: 05.03.2022).