Russian Federation
Russian Federation
Recently, the role of various kinds of social networks has significantly increased as a source of an array of heterogeneous data, including in the event of incidents and emergencies. Analysis of the entire array of such heterogeneous data accumulated in social networks makes it possible to make managerial decisions on its basis and develop scenarios for preventive actions by rescue services in the event of an accident. This requires the development of a specialized information system aimed at solving this problem. This paper proposes the original architecture of this information system, on the basis of which the implementation of the software product is planned in the future.
big data, emergency, software tool, coefficients and indicators, structuring
1. Thaduri A. Railway Assets: A Potential Domain for Big Data Analytics // Procedia Computer Science. 2015. Vol. 53. P. 457-467.
2. Rabinovich A.E., Avgust A.V. Primenenie tekhnologii Big Data v sfere zheleznodorozhnogo soobshcheniya // Original'nye issledovaniya. 2021. T. 11. S. 155-161.
3. Sboev A.G. Nejrosetevoe modelirovanie i mashinnoe obuchenie na osnove eksperimental'nyh i nablyudatel'nyh dannyh: dis. … d-ra fiz.-mat. nauk. M., 2021. 389 s.
4. Vostryh A.V. Kognitivnaya model' opisaniya pol'zovatelej informacionnyh sistem, ispol'zuemyh v MCHS Rossii // Prirodnye i tekhnogennye riski (fiziko-matematicheskie i prikladnye aspekty). 2022. № 2 (42). S. 47-57.
5. Vostryh A.V. Metod ocenki effektivnosti graficheskih pol'zovatel'skih interfejsov programmnyh produktov // Pribory i sistemy. Upravlenie, kontrol', diagnostika. 2022. № 10. S. 19-28.
6. Eremenko K. Rabota s dannymi v lyuboj sfere. Kak vyjti na novyj uroven', ispol'zuya analitiku. M.: Al'pina Pablisher, 2019. 304 s.
7. Stivens-Davidovic S. Vse lgut. Poiskoviki, Big Data i Internet znayut o vas vse. M.: Eksmo, 2018. 384 s.
8. Maksimov A.V., Matveev A.V. Perspektivy primeneniya iskusstvennogo intellekta v analize bol'shih dannyh social'nyh setej pri vozniknovenii chrezvychajnyh situacij// Servis bezopasnosti v Rossii: opyt, problemy, perspektivy. Sovremennye metody i tekhnologii preduprezhdeniya i profilaktiki vozniknoveniya chrezvychajnyh situacij: materialy XI Vseros. nauch.-prakt. konf. 2019. S. 284-286.
9. Maksimov A.V., Matveev A.V. Perspektivy ispol'zovaniya kollektivnyh znanij pri reagirovanii na chrezvychajnye situacii // Nauch.-analit. zhurn. «Vestnik S.-Peterb.un-ta GPS MCHS Rossii». 2019. № 4. S. 89-97. EDN QPBTLA.
10. Gudovskih D.V. Analiz emotivnosti tekstov na osnove psiholingvisticheskih markerov s opredeleniem morfologicheskih svojstv // Vestnik VGU. Ser.: Lingvistika i mezhkul'turnaya kommunikaciya. 2015. № 3. S. 92-97.
11. Pang B., Lee L. Opinion mining and sentiment analysis // Foundations and Trendsin Information Retrieval. 2008. Vol. 2. № 1/2. P. 543-561.
12. Leont'ev A.A. Osnovy psiholingvistiki. M.: SMYSL, 1997. 287 s.
13. Sadegh M. Opinion mining and sentiment analysis: A survey // International Journal of Computers & Technology 2.3. 2012. P. 171-178.
14. Beigi G. An overview of sentiment analysis in social media and its applications in disaster relief // Sentiment analysis and ontology engineering. - Springer. 2016. pp. 313-340.
15. Mika V.M., Graziotin D., Kuutila M. The evolution of sentiment analysis - A review of research topics, venues, and top cited papers // Computer Science Review 27. 2018. P. 16-32.
16. Mikolov T. Distributed representations of words and phrases and their compositionality // Advances in neural information processing systems. 2013. P. 3111-3119.
17. Wei X. Low-Resource cross-Domain product review sentiment classification based on a CNN with an auxiliary large-Scale corpus // Algorithms. 2017. T. 10. № 3. P. 81.
18. McAuley J. Inferring networks of substitutable and complementary products. In Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD’15). Sydney, Australia. 2015. P. 178-183.