Russian Federation
The results of studies to assess the effect of modification conditions on carbon nanostructures MWCNT on the electrostatic properties of liquid hydrocarbons are presented. The influence of various factors on the process of electrification of modified hydrocarbon fluids under the conditions of their homogenization by regression analysis and neural network modeling was studied.
nanofluids, static electricity, hydrocarbon fluids, regression analysis, neural network modeling method
1. Verevkin V.N. Standarty i normy elektrostaticheskoy iskrobezopasnosti (ESIB) // Energobezopasnost' i energosberezhenie. 2008. № 1 (22). S. 41-48.
2. Sorokin A.Yu., Ivanov A.V. Obespechenie elektrostaticheskoy bezopasnosti pri transportirovke legkovosplamenyayuschihsya zhidkostey i vnedrenie uglerodnyh nanorazmernyh chastic // Problemy obespecheniya bezopasnosti pri likvidacii posledstviy chrezvychaynyh situaciy: sb. statey po materialam V Vseros. nauch.-prakt. konf. s mezhdunar. uch. 15-16 dek. 2016 g.: v 2-h ch. Voronezh: Voronezhskiy in-t GPS MChS Rossii, 2017. Ch. 1. S. 332-335.
3. Upravlenie elektrostaticheskimi svoystvami zhidkih uglevodorodov, modificirovannyh uglerodnymi nanostrukturami / Ivanov A.V. // Pozharovzryvobezopasnost' / Fireand Explosion Safety. 2017. T. 26. № 7. S. 16-27.
4. Mnogofaktornaya regressionnaya model' processov detoksikacii pochv v usloviyah chrezvychaynyh situaciy na ob'ektah neftegazovogo kompleksa / A.A. Tarancev [i dr.] // Problemy upravleniya riskami v tehnosfere. 2016. № 4 (40). S. 34-42.
5. Linnik Yu.V. Metod naimen'shih kvadratov i osnovy teorii obrabotki nablyudeniy. 2-e izd. M.: Fizmatgiz, 1962.
6. Nalimov V.V., Chernova N.A. Statisticheskie metody planirovaniya ekstremal'nyh eksperimentov. M.: Nauka, 1965.
7. Kritenko M.I., Tarancev A.A., Schebarov Yu.G. Ocenka znachimosti faktorov pri ih kompleksnom vozdeystvii na sistemu // Izvestiya RAN. Avtomatika i telemehanika. 1995. № 10.
8. Bol'shev L.N., Smirnov N.V. Tablicy matematicheskoy statistiki. M.: Nauka, 1983.
9. Ventcel' E.S. Teoriya veroyatnostey. 5-e izd., stereotip. M.: Vyssh. shk., 1998.
10. Korol'kov A.P., Kolesnikov D.A., Hahanov E.A. Perspektivy primeneniya neyrotehnologiy v celyah monitoringa sostoyaniya magistral'nyh nefteprovodov v Arkticheskoy zone // Problemy upravleniya riskami v tehnosfere. 2016. № 3 (39). S. 6-12.
11. Predicting the viscosity of multi-walled carbon nanotubes/water nanofluid by developing an optimal artificial neural network based on experimental data / M. Afrand [et al] // International Communications in Heat and Mass Transfer. 2016. T. 77. S. 49-53.
12. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes / J. Glory [et al] // Journal of applied physics. 2008. T. 103. № 9.
13. Borovikov V.P. Neyronnye seti. Statistica Neural Networks. Metodologiya i tehnologii sovremennogo analiza dannyh. 2-e izd. M.: Goryachaya liniya - Telekom, 2008.