This paper presents a analysis of different modern models for the oxydative pyrolysis of wood. Some models was developed involving the influence only chemical reaction kinetics, other involving the combined influence of moisture, char oxidation and flame radiation. In this study, agreement between the experimental and calculated results for three model is presented. The results show that the empirical models have some limitations, such as too many model input parameters, a lack of studies on mechanical behaviors of woods, limited experimental conditions.
oxidative pyrolysis, kinetics, model of pyrolysis, wood
1. Kinetic study of lignocellulosic biomass oxidative pyrolysis / M. Amutio [et. al.] // Fuel. 2012. № 95. S. 305-311.
2. Smouldering of pine wood: kinetics and reaction heats / A. Anca-Couce [et. al.] // Combustion and Flame. 2012. № 159. S. 1708-1719.
3. Chaos M., Khan M.M., Dorofeev S.B. Pyrolysis of corrugated cardboard in inert and oxidative environments // Proceedings of the Combustion Institute. 2013. № 4. S. 2583-2590.
4. Chen H., Zhao W., Liu N. Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres // Energy Fuels. 2011. № 25. S. 797-803.
5. Characteristics of pine wood oxidative pyrolysis: degradation behavior, carbon oxide production and heat properties / Y. Su [et. al.] // Journal of Analytical and Applied Pyrolysis. 2012. № 98. S. 137-143.
6. Blasi C.Di. Modeling intra- and extra-particle processes of wood fast pyrolysis // AICheE Journal. 2002. № 48 (10). S. 2386-2397.
7. Park W.C., Atreya A., Baum H.R. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis // Combustion and Flame. 2010. № 157. S. 481-494.
8. Capart R., Khezami L., Burnham A.K. Assessment of various kinetic models for the pyrolysis of a microgranular cellulose // Thermochimica Acta. 2004. V. № 417. S. 79-89.
9. Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse / G. Varhegyi [et. al.] // Energy Fuels. 1989. № 3. S. 329-335.
10. Generalized pyrolysis model for combustible solids. URL: http://code.google.com/p/gpyro (data obrascheniya: 20.10.2015).
11. Lautenberger C., Fernandez-Pello C. A model for the oxidative pyrolysis of wood // Combustion and Flame. 2009. № 156. S. 1503-1513.
12. FireFOAM Code. URL: https://github.com/fireFoam-dev/ (data obrascheniya: 20.10.2015).
13. OpenFOAM. URL: http://www.openfoam.com/ (data obrascheniya: 20.10.2015).
14. Din Y., Wang C., Lu S. Modeling the pyrolysis of wet wood using FireFOAM // Energy Conversion and Management. 2015. № 98. S. 500-506.
15. Liu N., Niu H. Thermal decomposition of pine branch: Unified kinetic model on pyrolytic reactions in pyrolysis and combustion // Fuel. 2015. № 160. S. 339-345.
16. Branca C., Blasi C.Di. Global interinsic kinetics of wood oxidation // Fuel. 2004. № 83. S. 81-87.
17. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using tg-ftir analysis / M.X. Fang [et. al.] // Journal of Analytical and Applied Pyrolysis. 2006. № 77. S. 22-27.
18. Conesa J.A., Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions // Thermochimica Acta. 2011. № 523. S. 176-181.
19. Branca C., Albano A., Blasi C.Di. Critical evaluation of global mechanisms of wood devolatilization // Thermochimica Acta. 2005. № 429. S. 133-141.
20. A modified model of pyrolysis for charring materials in fire / L. Yang [et. al.] // International Journal of Engineering Science. 2002. № 40. S. 1011-1021.
21. Modeling pyrolysis of wet wood under external heat flux / D. Shen [et. al.] // Fire Safety Journal. 2007. № 42. S. 210-217.
22. Prediction of the burning rates of charring polymers / S.I. Stoliarov [et. al.] // Combustion and Flame. 2010. № 157. S. 2024-2034.