The problem of influence of chemical and physical factors on biological processes zero macrophase growth and development of plants is considered. Neural network model is proposed, that allows to analyze the sensitivity to different variables in the process of forming a network, to establish links between them and visualize the results by plotting the volumetric multivariate chart
regression analysis, neural network model, multivariate analysis, modeling of biological processes
1. Intensifikaciya pitaniya rasteniy nulevoy makrofazy rosta i razvitiya mineral'nymi soedineniyami ugleroda himicheskim i elektrofizicheskim metodami / O.V. Shvecova [i dr.] // Izvestiya S.-Peterb. gos. tehnol. in-ta (tehn. un-ta). 2015. № 28 (54). S. 73-82.
2. Sposob i ustroystvo upravleniya fiziko-himicheskimi processami v veschestve i na granice razdela faz: pat. 2479005 Ros. Federaciya, MPK G 05 B 24/02, H 03 B 28/00. / Ivahnyuk G.K., Matyuhin V.N., Klachkov V.A., Shevchenko A.O., Knyazev A.S., Ivanov A.V., Rodionov V.A.; zayaviteli i patentoobladateli Ivahnyuk G.K., Matyuhin V.N., Klachkov V.A., Shevchenko A.O. № 2011118347/08; zayavl. 21.01.10; opubl. 10.04.13, Byul. № 10. 3 s.
3. Borovikov V.P. Neyronnye seti. Statistica Neural Networks: Metodologiya i tehnologii sovremennogo analiza dannyh. 2-e izd., pererab. i dop. M.: Goryachaya liniya - Telekom, 2008.
4. Kol'cov Yu.V., Permyakov M.N. Postanovka zadachi prognozirovaniya produktivnosti agroekosistem // Politematicheskiy setevoy elektron. nauch. zhurn. Kubanskogo gos. agrar. un-ta. 2004. № 7 (05). URL: http://ej.kubagro.ru/ 2004/05/10.htm (data obrascheniya: 30.04.2015).
5. Barcev S.I., Barceva O.D. Funkcional'no-invariantnyy podhod k probleme unikal'nosti biologicheskih sistem: prostaya neyrosetevaya model' // DAN. 2006. № 3. S. 394-397.
6. Zavodchikov N.D., Speshilova N.V., Taspaev S.S. Ispol'zovanie neyrosetevyh tehnologiy v prognozirovanii effektivnosti proizvodstva zerna // Izvestiya Orenburgskogo gos. agrar. un-ta. 2015. № 1 (51). S. 216-219.