Present results of research of the identification of light petroleum products by the Raman scattering method at different intervals for the purposes of fire investigation. A simulation method was used to evaluate results with the help of neural networks.
light petroleum products, Raman spectrometry, neural network architecture, fire investigation
1. Gavrilov D.A., Gavrilova T.S., Preobrazhenskiy N.B. Ekspress-analiz: odnim vzglyadom // Nauka iz pervyh ruk. 2011. № 4 (40).
2. Krylov A.S., Vtyurin A.N., Gerasimova Yu.V. Obrabotka dannyh infrakrasnoy fur'e-spektroskopii: metod. posobie. Krasnoyarsk: Institut fiziki SO RAN, 2005.
3. Tarasevich B.N. Osnovy IK-spektroskopii s preobrazovaniem Fur'e. Podgotovka prob v IK-spektroskopii. M.: MGU, 2012.
4. Ahmadjian M., Brown C.W. Petroleum identification by laser Raman spectroscopy // Analytical Chemistry. 1976. T. 48. № 8. S. 1 257-1 259.
5. Vinarskiy V.A. Hromatografiya. Kurs lekciy v dvuh chastyah. Ch. 1: Gazovaya hromatografiya. Minsk: BGU, 2002.
6. Mironov V.L. Osnovy skaniruyuschey zondovoy mikroskopii. M.: Tehnosfera, 2009.
7. Gavrilov D.A. O provedenii analiza sostava vody v zone neftedobychi v real'nom masshtabe vremeni // Tehnologii tehnosfernoy bezopasnosti. 2012. № 2. S. 16-16.
8. Rand S.J. Significance of tests for petroleum products. ASTM International, 2003. T. 1.
9. Golovko V.A., Galushkin A.I. Neyronnye seti: obuchenie, organizaciya i primenenie // Neyrokomp'yutery i ih primenenie. 2001. Kn. 4.
10. Adaptivnoe postroenie ierarhicheskih neyrosetevyh klassifikatorov / S.A. Dolenko [i dr.] // Neyrokomp'yutery: razrabotka, primenenie. 2005. № 1-2. S. 4-11.
11. Speight J.G. Handbook of petroleum product analysis. John Wiley & Sons, 2015.