NEURAL NETWORK SOLUTION OF INVERSE PROBLEM OF IDENTIFICATION OF LIGHT PETROLEUM PRODUCTS BY RAMAN SPECTROSCOPY FOR FIRE INVESTIGATION
Abstract and keywords
Abstract (English):
Present results of research of the identification of light petroleum products by the Raman scattering method at different intervals for the purposes of fire investigation. A simulation method was used to evaluate results with the help of neural networks.

Keywords:
light petroleum products, Raman spectrometry, neural network architecture, fire investigation
Text
Publication text (PDF): Read Download
References

1. Gavrilov D.A., Gavrilova T.S., Preobrazhenskiy N.B. Ekspress-analiz: odnim vzglyadom // Nauka iz pervyh ruk. 2011. № 4 (40).

2. Krylov A.S., Vtyurin A.N., Gerasimova Yu.V. Obrabotka dannyh infrakrasnoy fur'e-spektroskopii: metod. posobie. Krasnoyarsk: Institut fiziki SO RAN, 2005.

3. Tarasevich B.N. Osnovy IK-spektroskopii s preobrazovaniem Fur'e. Podgotovka prob v IK-spektroskopii. M.: MGU, 2012.

4. Ahmadjian M., Brown C.W. Petroleum identification by laser Raman spectroscopy // Analytical Chemistry. 1976. T. 48. № 8. S. 1 257-1 259.

5. Vinarskiy V.A. Hromatografiya. Kurs lekciy v dvuh chastyah. Ch. 1: Gazovaya hromatografiya. Minsk: BGU, 2002.

6. Mironov V.L. Osnovy skaniruyuschey zondovoy mikroskopii. M.: Tehnosfera, 2009.

7. Gavrilov D.A. O provedenii analiza sostava vody v zone neftedobychi v real'nom masshtabe vremeni // Tehnologii tehnosfernoy bezopasnosti. 2012. № 2. S. 16-16.

8. Rand S.J. Significance of tests for petroleum products. ASTM International, 2003. T. 1.

9. Golovko V.A., Galushkin A.I. Neyronnye seti: obuchenie, organizaciya i primenenie // Neyrokomp'yutery i ih primenenie. 2001. Kn. 4.

10. Adaptivnoe postroenie ierarhicheskih neyrosetevyh klassifikatorov / S.A. Dolenko [i dr.] // Neyrokomp'yutery: razrabotka, primenenie. 2005. № 1-2. S. 4-11.

11. Speight J.G. Handbook of petroleum product analysis. John Wiley & Sons, 2015.

Login or Create
* Forgot password?