Russian Federation
The stability of the work of enterprises of dust-forming areas of industry critically depends on the ability of enterprises to ensure the required level of explosion and fire safety of production, which increases the relevance of improving the traditional methods used, as well as the introduction of new and additional explosion prevention measures. In the article, using mathematical and computer modeling methods, the main factors and patterns of the formation of an explosive dust situation in ventilated industrial premises with the release of combustible dust are investigated. On this basis, the possibility of using permanent general exchange ventilation to reduce the likelihood of the formation of explosive situations and prevent the occurrence of explosions and fires in dusty industrial premises is shown.
dust-air mixtures, explosion and fire safety, explosive situations, emergency measures, permanent general ventilation
1. Korol'chenko A.Ya., Poletaev N.L. Ocenka verhnego koncentracionnogo predela goreniya aerovzvesi // Aktual'nye problemy pozharnoj bezopasnosti. M., 2022. S. 470-474.
2. Yun Seok Kim, Min Chul Lee, Dong Ho Rie. Explosion characteristics of combustible wood dust in confined system: Analysis using oxygen consumption energy // Journal of mechanical science and technology. 2016. Vol. 30. P. 71-79. DOI: https://doi.org/10.1007/s12206-016-1250-y.
3. Murzin D. Vzryvy i vozgoraniya, vyzvannye pyl'yu. Preventivnye mery i puti resheniya // Sistemy bezopasnosti. 2008. № 6. S. 168-170.
4. Lukin A.E., Potapova S.O. K voprosu ob opasnosti predpriyatij mukomol'nogo proizvodstva // Pozharnaya bezopasnost': problemy i perspektivy. 2018. T. 1. № 9. S. 535-539.
5. Federal'nye normy i pravila bezopasnosti vzyvopozharoopasnyh proizvodstvennyh ob"ektov hraneniya i pererabotki rastitel'nogo syr'ya: prikaz Federal'noj sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru ot 3 sent. 2020 g. № 331 // Elektronnyj fond pravovoj i normativno-tekhnicheskoj dokumentacii. URL: docs.cntd.ru›document/565911147 (data obrashcheniya: 20.08.2023).
6. Borovickij A.A., Ugorova S.V., Tarasenko V.I. Sovremennaya promyshlennaya ventilyaciya. Vladimir: Izd-vo Vladimirskogo gos. un-ta, 2015. 59 s.
7. Posohin V.N. Ventilyaciya. M.: ASV. 2020. 624 s.
8. Jef Snoeys, John E. Going. Advances in dust explosion protection techniques: flameless venting // Procedia engineering. 2012. Vol. 45. P. 403-413. DOI:https://doi.org/10.1016/j.proeng.2012.08. 178 s.
9. Dmitruk E.A. Metodologicheskie osnovy rascheta sistem aspiracii zernopererabatyvayushchih predpriyatij i elevatorov. M.: CNIITEI hleboproduktov, 2001. 40 s.
10. Grimitlin A.M., Denisihina D.M. Matematicheskoe modelirovanie v proektirovanii sistem ventilyacii i kondicionirovanii. SPb.: Izd-vo AVOK, 2013. 147 s.
11. John E. Matsson. An introduction to ansys fluent 2019. SDC Publications, 2019. 454 p.
12. Svod pravil 7.13130.2013. Otoplenie, ventilyaciya i kondicionirovanie. Trebovaniya pozharnoj bezopasnosti. M.: VNIIPO MCHS Rossii, 2013. 29 s.
13. Svod pravil 12.13130.2009. Opredelenie kategorij pomeshchenij, zdanij i naruzhnyh ustanovok po vzryvopozharnoj i pozharnoj opasnosti. M.: VNIIPO MCHS Rossii, 2009. 25 s.