DYNAMICS OF POLLUTION OF SURFACE WATERS OF THE VOLGA RIVER WITH PHENOL
Abstract and keywords
Abstract (English):
Phenols are priority pollutants of the natural environment and enter water sources through wastewater treatment plants of industrial enterprises. They pose a certain threat to the human body, since many of them are highly toxic and belong to the first class of danger. Organochlorine derivatives of phenol exhibit particularly high toxicity; under conditions of water disinfection with chlorine-containing preparations, they can form polychlorinated dibenzo-n-dioxins, which are classified as super-ecotoxicants and have a negative effect on the genetic code of the human body. As a result of the studies, the surface waters of the Volga river basin of the Kuibyshev reservoir in the water area of the city of Kazan were analyzed for the content of phenol and its derivatives using gas-liquid chromatography. When analyzing phenols in the aquatic environment, it was established that the maximum permissible concentrations norms for ortho-, meta-, para- chlorophenols, which are characterized by high toxicity to the human body and wildlife, were exceeded. The dynamics of seasonal changes in the concentration of phenol and its derivatives in the surface waters of the Volga river has been established, which are associated with the intensification of redox processes in the summer, occurring under the influence of temperature factors involving dissolved oxygen.

Keywords:
phenols, priority contaminants, chromatography, sorbents, hydrogen bonds
Text
Publication text (PDF): Read Download
References

1. Analysis of alkylphenols bisphenol and alkylphenol ethoxylates in microbial-fermented functional beverages and bottled water: Optimization of a dispersive liquid-liquid microextraction protocol based on natural hydrophobic deep eutectic solvents / D. Bante Perez [et al.] // Food Chem. 2022. Vol. 377. № 131921.

2. Zebrafish early life stages for toxicological screening: Insights from molecular and biochemical markers / D. Santos [et.al.] // Adv. Mol. Toxicology. 2018. Vol. 12. P. 151–179.

3. Sample treatment methods for the determination of phenolic environmental estrogens in food and drinking water / Yu Li [et.al.] // J. AOAC Int. 2020. Vol. 103. № 2. P. 348–364.

4. Synthesis of amino-phenolic humic-like substances and comparison with natural aquatic humic acids: A multi-analytical techniques approach / A.-V. Jung [et al.] // Org. Geochem. 2005. Vol. 36. № 9. P. 1252–1271.

5. Ren S., Frymier P.D., Schultz T.W. An exploratory study of the use of multivariate techniques to determine mechanisms of toxic action // Ecotoxicol. Environ. Saf. 2003. Vol. 55. № 1. P. 86–97.

6. Liu D., Pacepavicius G. A systematic study of the aerobic and anaerobic biodegradation of 18 chlorophenols and 3 cresols // Toxic. Assess. 1990. Vol. 5. № 4. P. 367–387.

7. In vitro cytotoxicity of chlorophenols to goldfish GF-scale (GFS) cells and quantitative structure-activity relationship / H. Saito [et al.] // Environ. Toxicol. Chem. 1991. Vol. 10. № 2. P. 235–241.

8. Toxicity of 58 substituted anilines and phenols to algae pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs / V. Aruoja [et al.] // Chemosphere. 2011. Vol. 84. № 10. P. 1310–1320.

9. Michalowicz J., Duda W. Phenols – Sources and Toxicity (Review) // Pol. J. Env. Stud. 2007. Vol. 16. № 3. P. 347–362.

10. Toxicology and carcinogenesis studies of pentachlorophenol in rats / R.S. Chhabra [et al.] // Toxicol. Sci. 1999. Vol. 48. № 1. P. 14–20.

11. Zeljezie D. Chromosomal aberration and single cell gel electrophoresis (Comet) assay in the longitudinal risk assessment of occupational exposure to pesticides // Mutagenesis. 2001. Vol. 16. № 4. P. 359–363.

12. Olaniran A.O., Igbinosa E.O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes // Chemosphere. 2011. Vol. 83. № 10. P. 1297–1306.

13. Post-combustion formation of PCDD, PCDF, PCBz, and PCPh in a laboratory-scale reactor: Influence of dibenzo-p-dioxin injection / S. Jansson [et al.] // Chemosphere. 2009. Vol. 76. № 6. P. 818–825.

14. Shehab Z.N., Jamil N.R., Aris A.Z. Occurrence, environmental implications and risk assessment of Bisphenol A in association with colloidal particles in an urban tropical river in Malaysia // Sci. Rep. 2020. Vol. 10. № 20360.

15. Primenenie magnitnyh sorbentov, modificirovannyh molekulyarno imprintirovannymi polimerami, dlya skrininga fenol'nyh ksenoestrogenov / A.S. Gubin [i dr.] // Analitika i kontrol'. 2023. T. 27. № 1. C. 32–41. DOI: 10/15826/analitika.2023.27.1.003.

16. Gubin A.S., Kushnir A.A., Suhanov P.T. Sorbcionnoe koncentrirovanie fenolov iz vodnyh sred magnitnymi molekulyarno imprintirovannymi polimerami na osnove N-vinilpirrolidona (chast' 2) // Sorbcionnye i hromatograficheskie processy. 2022. T. 22. № 3. C. 274–283.

17. Gazohromatograficheskoe opredelenie fenolov v poverhnostnyh vodah s ispol'zovaniem polioksietilen bis arsenata / A.V. Taneeva [i dr.] // Analitika i kontrol'. 2020. T. 24. № 4. C. 305–314. DOI:https://doi.org/10.15826/analitika.2020.24.4.001.

18. Osobennosti gazohromatograficheskih metodov kontrolya soderzhaniya fenolov v vodnoj srede / A.V. Taneeva [i dr.] // Voprosy sovremennoj nauki i praktiki. Universitet im. V.I. Vernadskogo. 2023. № 2 (88). C. 7–18.

19. RD 52.24.643–2002. Metod kompleksnoj ocenki stepeni zagryaznennosti poverhnostnyh vod po gidrohimicheskim pokazatelyam. Rostov na/D, 2002. 50 c.

Login or Create
* Forgot password?