Saint-Petersburg university State fire service of EMERCOM of Russia (department of fire extinguishing and emergency rescue operations, professor)
Russian Federation
Institute of information technologies MIREA – Russian technological university (department of applied mathematics, professor)
Russian Federation
Moscow, Russian Federation
UDK 004.932 Обработка изображений
The article presents the results of applying the method of almost-periodic analysis based on the shift function to the processing of a time series characterizing the index of accumulated cyclone energy in the Atlantic Ocean. Accumulated cyclone energy is an index used to measure the activity of the hurricane season. It combines the number of hurricanes that occurred during the study period, how long they existed, and how powerful were. The studied data are represented by a time series of observations from 1851 to 2023 with a measurement frequency of one year. The results obtained in the course of the study show that the greatest cyclone activity occurs with a periodicity of 15 years and 62 years. The identified almost-periods were confirmed for typhoons in the western Pacific Ocean. The study showed the possibility of estimating the occurrence of extreme annual values of accumulated typhoon energy.
data analysis methods, ordered argument data, trend, nonlinear oscillations, almost-period, time series, emergencies, typhoons
1. Divergent ecological responses to typhoon disturbance revealed via landscape‐scale acoustic monitoring / S.R.P.J. Ross [et al.] // Global Change Biology. 2024. Vol. 30. № 1. P. 17–67. DOI:https://doi.org/10.1111/gcb.17067.
2. Hokson J.A., Kanae S. The use of a long-track central pressure and movement speed in similar typhoon identification for rainfall prediction // Journal of JSCE. 2024. Vol. 12. № 2. P. 23–36. DOI:https://doi.org/10.2208/journalofjsce.23-16036.
3. Lyu Yu., Yuan H., Wang Yu. Economic vulnerability of aquaculture households of elderly people to typhoon disasters and the factors influencing it in the island regions of southeast China // International Journal of Disaster Risk Reduction. 2023. Vol. 85. P. 103–192. DOI:https://doi.org/10.1016/j.ijdrr.2022.103492.
4. Global population profile of tropical cyclone exposure from 2002 to 2019 / R. Jing [et al.] // Nature. 2024. Vol. 626. № 7999. P. 549–554. DOI:https://doi.org/10.1038/s41586-023-06963-z.
5. Paramonov A.A., Kuz'min V.I. Programmnyj kompleks obrabotki signalov, predstavlennyh nelinejnymi kolebaniyami s trendom // Opticheskie metody issledovaniya potokov: trudy XVII Mezhdunar. nauch.-tekhn. konf. 2023. S. 265–274.
6. Dzerjinsky R.I., Krynetsky B.A., Chernorizova N.V. The Changes Dynamics Analysis in the Japanese Stock Exchange Nikkei 225 Index in the Latest Time. In: Silhavy R., Silhavy P., Prokopova Z. (eds) Data Science and Intelligent Systems // Lecture Notes in Networks and Systems. 2021. Vol. 231. DOI:https://doi.org/10.1007/978-3-030-90321-3_11.
7. Paramonov A.A., Kuz'min V.I. Analiz dinamiki makroekonomicheskih pokazatelej Rossii // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Ser.: Estestvennye i tekhnicheskie nauki. 2022. № 11/2. S. 123–128. DOI:https://doi.org/10.37882/2223-2966.2022.11-2.24.
8. Paramonov A.A., Smolenceva T.E., Kalach A.V. Sovremennye aspekty analiza bol'shih dannyh s uporyadochennym argumentom // Aktual'nye problemy prikladnoj matematiki, informatiki i mekhaniki: sb. trudov Mezhdunar. nauch. konf. Voronezh, 2024. S. 609–613.
9. Our World in Data. URL: https://ourworldindata.org/ (data obrashcheniya: 15.07.2024).
10. National Centers for Environmental Information. URL: https://www.ncei.noaa.gov/ (data obrashcheniya: 15.07.2024).