Abstract and keywords
Abstract (English):
The work conducts an experiment to isolate a useful signal from a correlated one (signal + noise) using the adaptive filtering method, evaluates its effectiveness, and the possibility of its use for signal preprocessing in acoustic methods for determining leaks in a pipeline system. The results obtained showed that the adaptive filtration method can be used in acoustic methods for detecting leaks in pipeline systems.

Keywords:
adaptive filtering, signal, noise, leakage, pipeline
Text
Publication text (PDF): Read Download
References

1. Alekhin M.Yu., Yanchenko A.Yu., Krymskij V.V. O prognozirovanii ekonomicheskogo ushcherba ot chrezvychajnyh situacij // Nauch.-analit. zhurn. «Vestnik S.-Peterb. un-ta GPS MCHS Rossii». 2012. № 2. S. 84–88. EDN PGEXBP.

2. Skrypnikova O.I., SHCHetka V.F. Sravnitel'nyj analiz metodov ocenki riskov avarij na ob"ektah transportirovki nefteproduktov // Nauch.-analit. zhurn. «Vestnik S.-Peterb. un-ta GPS MCHS Rossii». 2022. № 4. S. 20–33. EDN MQNDXP.

3. Taranchuk E.A., Grigoryan A.N. Teoreticheskie i prakticheskie aspekty innovacionnogo razvitiya v Rossijskoj federacii // Nauch.-analit. zhurn. «Vestnik S.-Peterb. un-ta GPS MCHS Rossii». 2016. № 2. S. 96–100. EDN WAZPCF.

4. Akimova N.V. Distancionnoe obnaruzhenie techej v truboprovodah // Geo-Sibir'. 2009. T. 2. S. 137–142. EDN PFSFIX.

5. Belyj V.L. Kombinirovannaya sistema uluchsheniya razborchivosti audio signala v agressivnoj shumovoj srede // Komp'yuternye sistemy i seti: materialy 50-j Nauch. konf. aspirantov, magistrantov i studentov, Minsk: Belorusskij gos. un-t inform. i radioelektron., 2015. S. 190–192.

6. NOIZEUS: A noisy speech corpus for evaluation of speech enhancement algorithms. URL: http://ecs.utdallas.edu/loizou/speech/noizeus/ (data obrashcheniya: 17.10.2023).

7. Kalambet Yu.A., Koz'min Yu.P., Samohin A.C. Fil'traciya shumov. Sravnitel'nyj analiz metodov // Analitika. 2017. № 5 (36). S. 88–101. DOIhttps://doi.org/10.22184/2227-572X.2017.36.5.88.101. EDN ZIVVAJ.

8. Abitov R.N., Selyugin A.S., Nizamova A.H. Problemy nadezhnosti raboty vodoprovodnyh setej naselennyh punktov // Energosberezhenie i vodopodgotovka. 2022. № 5. S. 9–14. EDN WWSZZS.

9. Haykin S. Adaptive Filter Theory. Pearson Education India, 2002.

10. Regalia P. Adaptive IIR filtering in signal processing and control. Routledge, 2018. DOI:https://doi.org/10.1201/9781315136653.

11. Korobkov A.A., Osipova O.S. Ocenka kachestva fil'tracii v zavisimosti ot harakteristik vhodnogo signala adaptivnogo fil'tra // Novye tekhnologii, materialy i oborudovanie aviakosmicheskoj otrasli: materialy Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem. 2016. C. 548–552. EDN WMXKOX.

12. Andrew Ng. CS294A Lecture Notes. Sparse autoencoder. Stanford. URL: http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf (data obrashcheniya: 23.10.2023).

13. Sergienko A.B. Cifrovaya obrabotka signalov: uchebnik dlya vuzov. 2-e izd. SPb.: Piter, 2006.

14. Paulo S.R. Diniz Adaptive Filtering. Springer Nature Switzerland AG, 2020.

15. Sergienko A.B. Algoritmy adaptivnoj fil'tracii: osobennosti realizacii v MATLAB // Eksponenta Pro. Matematika v prilozheniyah. 2003. № 1. S. 18–28. EDN TAXZCF.

16. Budyldina N.V., Truhin M.P. Analiz metodov adaptivnoj fil'tracii slabyh signalov na fone moshchnyh pomekh // Komp'yuternyj analiz izobrazhenij: Intellektual'nye resheniya v promyshlennyh setyah (CAI-2016): sb. nauch. trudov po materialam I Mezhdunar. konf. / pod obshch. red. A.G. Tyagunova. Ekaterinburg: Izd-vo UMC UPI, 2016. S. 153–154. EDN XWSMXL

Login or Create
* Forgot password?