from 01.01.2020 until now
Russian Federation
The relevance of the article is due to the need to improve existing intrusion detection systems in the context of a constantly changing arsenal of tools and techniques of intruders. Classic intrusion detection systems algorithms based on signature and behavioral analysis do not provide a sufficient degree of network security and cannot prevent dynamic attacks on systems. The development of new algorithms and models will improve the overall security of the network structure, reduce the number of false positives and minimize damage from computer attacks. Artificial immune systems use approaches to combat malicious influence similar to the mechanisms observed in living organisms. Namely, the detection of viruses and the development of an immune response – antibodies. This approach allows computer systems to further learn during operation, independently identifying computer viruses by their activity and independently developing means of combating malicious code.
intrusion detection systems, artificial immune systems, criteria model, ontological model, cognitive model, correlation rules.
1. Van K., Stolfo S.Dzh. Anomal'naya poleznaya nagruzka na osnove obnaruzheniya setevyh vtorzhenij // Poslednie dostizheniya v sfere obnaruzheniya vtorzhenij. 2004. S. 203–222.
2. Laboratoriya Linkol'na Massachusetskogo tekhnologicheskogo instituta: informacionnye sistemy Tekhnologii. URL: http://www.ll.mit.edu/mission/kommunikacii/ist/corpora/ideval/dannye/index.html (data obrashcheniya: 20.04.2004).
3. Parshenkova Yu.A., Maksimova E.A. Ugroza bezopasnosti sub"ektov kriticheskoj informacionnoj infrastruktury Rossijskoj Federacii // Kiberbezopasnost': tekhnicheskie i pravovye aspekty zashchity informacii: sb. nauch. trudov I Nac. nauch.-prakt. konf. M.: MIREA – Rossijskij tekhnologicheskij universitet, 2023. S. 71–74. EDN JQDLQV.
4. Maksimova E.A. Analiz zhiznennogo cikla sub"ekta kriticheskoj informacionnoj infrastruktury v kontekste infrastrukturnogo destruktivizma // Zashchita informacii. Insajd. 2021. № 5 (101). S. 4–10. EDN RYYOSO.
5. Maksimova E.A. Modeli i metody ocenki informacionnoj bezopasnosti sub"ekta kriticheskoj informacionnoj infrastruktury pri destruktivnyh vozdejstviyah infrastrukturnogo geneza: dis. … d-ra tekhn. nauk SPb., 2022. 448 s. EDN OHDNPO.
6. Jamal Al-Enezi. Artificial immune systems based committee machine for classification application. URL: https://bura.brunel.ac.uk/bitstream/2438/6826/1/FulltextThesis.pdf (data obrashcheniya: 23.05.2024).
7. Zhou Ji and Dasgupta D. Real-valued negative selection algorithm with variable-sized detectors. In LNCS 3102, Proceedings of GECCO 2004, Seattle, Washington, June 2004.
8. Zhengbing H., Ji Z., Ping M. A Novel Anomaly Detection Algorithm Based on RealValued Negative Selection System. 2008 Workshop on Knowledge Discovery and Data Mining, 23–24 January, Adelaide, SA. 2008. S. 499–502.
9. Bulanova N.S. Issledovanie effektivnosti primeneniya vspomogatel'nyh optimiziruemyh velichin pri ispol'zovanii metodov optimizacii na osnove iskusstvennyh immunnyh sistem. URL: http://is.ifmo.ru/diploma-theses/2015/master/bulanova/bulanova.pdf (data obrashcheniya: 23.05.2024).
10. Nikolenko S.I., Tulup'ev A.L. Samoobuchayushchiesya sistemy. M., 2009.
11. Potapova D.A., Brysin A.N. Antropomorfizm komp'yuternyh virusov. ISSN 2223-2966 // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Estestvennye i tekhnicheskie nauki. 2024. № 3. S. 93–96.
12. Analiz ogranichenij pri simmetrichnom i assimetrichnom shifrovanii dannyh / D.A. Potapova [i dr.] // Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Estestvennye i tekhnicheskie nauki. 2024. № 3. S. 142–146.
13. John H. Holmes Knowledge Discovery in Biomedical Data: Theory and Methods. URL: https://translated.turbopages.org/proxy_u/en-ru.ru.2a7631fb-61cafbec-883f06a9-74722d776562/https/www.sciencedirect.com/topics/immunology-and-microbiology/artificial-immune-system (data obrashcheniya: 23.05.2024).