Abstract and keywords
Abstract (English):
The article presents the results of a study assessing the deformation heat resistance of unidirectionally reinforced fiberglass samples taking into account increased bending stress. Due to their high performance and mechanical properties, polymer composites are widely used in the manufacture of critical structures. Deformation heat resistance determines the reliability and safety of polymer composite structures. Based on the Martens method, a method for assessing the deformation heat resistance of composite samples with continuous reinforcement at increased bending stress of the sample is proposed. Based on the test results, thermomechanical curves were constructed and the deformation heat resistance of fiberglass samples with unidirectional continuous reinforcement was assessed at increased bending stresses of 5, 20, 35, 50, 65 MPa. Tests of fiberglass samples were carried out in the temperature range 20÷200 °C. Based on the inflections on the thermomechanical curves, the valuesof the deformation heat resistance of unidirectionally reinforced fiberglass samples in the range of 160÷120 °C were determined. Polynomial dependences of deformation on temperature at various bending stresses of unidirectionally reinforced fiberglass samples were obtained. It is shown that the permissible deformation heat resistance of a polymer composite structure must be determined taking into account the stresses acting in it.

Keywords:
deformation heat resistance, Martens method, polymer composite structure, reinforced fiberglass; heat resistance tests
Text
Text (PDF): Read Download
References

1. Slyusarenko V.V., Zhuravleva L.A. Tekhniko-ekonomicheskaya ocenka stekloplastikov kak konstrukcionnyh materialov // Plasticheskie massy. 2005. № 2. S. 53–54.

2. Polimernye kompozicionnye materialy: struktura, svojstva, tekhnologiya: ucheb. posobie / M.L. Kerber [i dr.]; pod red. A.A. Berlina. SPb.: Professiya. 2008. 560 s.

3. Andryushkin A.Yu. Tekhnologii izgotovleniya elementov konstrukcij raketno-kosmicheskoj tekhniki iz gazonapolnennyh plastmass // Kosmonavtika i raketostroenie. 2012. № 1. S. 162–168.

4. Andryushkin A.Yu. Povyshenie funkcional'nyh i konstrukcionnyh svojstv gazonapolnennyh plastmass // Izvestiya rossijskoj akademii raketnyh i artillerijskih nauk. 2011. № 3 (69). S. 60–69.

5. Andryushkin A.Yu., Konyshev M.V., Ohapkin M.V. Propitka voloknistogo napolnitelya pri formirovanii armirovannogo polimernogo pokrytiya dlya tekhniki special'nogo naznacheniya // Voprosy oboronnoj tekhniki. Ser. 16: Tekhnicheskie sredstva protivodejstviya terrorizmu. 2017. № 11–12 (113–114). S. 63–69.

6. Afanas'ev A.V., Rabinskij L.N., Shershak P.V. Eksperimental'noe opredelenie deformacionnyh i prochnostnyh harakteristik polimernyh kompozicionnyh materialov // Mekhanika kompozicionnyh materialov i konstrukcij. 2010. T. 16. № 2. S. 214–232.

7. Svyazuyushchie dlya polucheniya teplostojkih kompozicionnyh materialov / Yu.A. Grigor'ev [i dr.] // Klei. Germetiki. Tekhnologii. 2014. № 11. S. 9–13.

8. Lapickij A.V. Epoksidnye polimernye matricy dlya vysokoprochnyh i teplostojkih kompozitov // Klei. Germetiki. Tekhnologii. 2010. № 2. S. 12–15.

9. Voronkov A.G., Yarcev V.P. Vliyanie temperatury i vida nagruzki na zakonomernosti razrusheniya epoksidnyh kompozitov // Plasticheskie massy. 2004. № 6. S. 27–29.

10. Savin V.F., Lugovoj A.N., Volkov Yu.P. Metodika opredeleniya termomekhanicheskih harakteristik polimernyh kompozicionnyh materialov // Zavodskaya laboratoriya. Diagnostika materialov. 2003. T. 69. № 6. S. 40–43.

11. Prodol'nyj izgib kak metod opredeleniya mekhanicheskih harakteristik materialov / V.F. Savin [i dr.] // Zavodskaya laboratoriya. Diagnostika materialov. 2006. T. 72. № 1. S. 55–58.

12. Volkov Yu.P., Savin V.F., Lugovoj A.N. Metodika opredeleniya verhnego temperaturnogo predela rabotosposobnosti polimernyh materialov // Plasticheskie massy. 2005. № 3. S. 44–45.

13. Kudrina A.V. Metody opredeleniya teplofizicheskih svojstv polimernyh svyazuyushchih // Klei. Germetiki. Tekhnologii. 2014. № 4. S. 33–35.

14. Prodol'nyj izgib polimernyh sterzhnej s uchetom deformacij polzuchesti i nachal'nyh nesovershenstv / S.V. Litvinov [i dr.] // Plasticheskie massy. 2013. № 7. S. 26–31.

15. Atyasova E.V., Blaznov A.N., Savin V.F. Teplostojkost' polimernyh kompozicionnyh materialov pri prodol'nom izgibe // Zavodskaya laboratoriya. Diagnostika materialov. 2014. T. 80. № 12. S. 53–57.

16. Vliyanie temperatury na prochnost' bazal'to- i stekloplastikov / A.N. Blaznov [i dr.] // Polzunovskij vestnik. 2014. № 4. T. 2. S. 154–158.

17. Issledovanie teplostojkosti polimernyh kompozitov na osnove epoksidnyh matric / V.V. Samojlenko [i dr.] // Polzunovskij vestnik. 2015. № 4. T. 1. S. 131–135.

18. Issledovanie termomekhanicheskih svojstv SVMPE / N.A. Adamenko [i dr.] // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. № 10 (257). S. 30–33.

19. Chimchikova M.K., Karpuhin A.A. Vliyanie mineral'nyh napolnitelej na teplostojkost' polimernyh kompozicionnyh materialov // Byulleten' nauki i praktiki. 2022. T. 8. № 8. S. 403–408.

20. Guseva M.A., Petrova A.P. Metody ispytanij i issledovanij termoreaktivnyh svyazuyushchih dlya PKM // Mekhanika kompozicionnyh materialov i konstrukcij. 2021. T. 27. № 1. S. 47–64.

Login or Create
* Forgot password?