Russian Federation
Russian Federation
Russian Federation
UDC 001.891.572
With changes in coal mining technology, extinguishing developing fires has become especially important, the elimination of which leads to the need to isolate emergency areas. To protect people, underground structures and equipment from the impact of shock waves during the isolation of emergency fire sections of workings, explosion-proof bulkheads are used, erected in various ways, the main one of which is hydromechanical. The object of the study is mechanical processes in an explosion-proof bulkhead. The monoblock of the explosion-resistant structure is subject to static loads due to the action of rock pressure, dynamic loads due to the action of air shock waves and thermal loads due to heating. This work uses a set of methods of scientific knowledge, including analysis and generalization of the results obtained in previous studies. In developing a mathematical model of the stress-strain state of an explosion-resistant bulkhead, analytical research methods were used using classical principles and laws of the theory of anisotropic (isotropic) thick plates, one of the main methods for solving boundary value problems – the energy method using variational calculus. The calculation scheme of an explosion-proof lintel is considered, the material of which is made on a cement base, industrial waste with additives of polypropylene fiber in the form of a thick plate, the radius of which changes according to a parabolic dependence or a circle, under the influence of a shock wave and temperature. In this case, according to previously conducted experimental studies, the influence of metal opening pipes and rock pressure on the stress-strain state of the bulkhead is not taken into account. The distributions of total (taking into account temperature) maximum normal stresses at minimum and maximum cross-sections of the workings under the influence of external loads, and the dependence of stresses on temperature differences under the influence of air shock waves are given.
coal mine, fire, explosion, blast-proof bulkhead, variational method, stress, strength
1. Paleev D.Yu. Sostoyanie i perspektivy nauchnogo obespecheniya gornospasatel'nyh rabot // Vestnik nauchnogo centra po bezopasnosti rabot v ugol'noĭ promyshlennosti. 2020. № 1. S. 22–28.
2. The gasdynamic method of calculation of explosion-proof distancesafter explosion during explosions of methane-air mixture in mines with regard to explosion protective structures /D.Yu. Paleev [et al.] // 30th International Conference of safety in mines research institutes. Johannesburg, 2003.
3. Sarko M.J., Weiss E.S. Evaluation of new methods and facilities to test explosion resistant seals // 29-th International conference of safety in mines research institutes. Vol. 1. Poland: Szczyrk, 2001. P. 157–166.
4. Rathbun J., McLane D. Investigating Planer Propagation of a Shockwave in a Shock Tunnel // Kaleidoscope. 2011. Vol. 10. Art. 24. URL: https://uknowledge.uky.edu/kaleidoscope/vol10/iss1/24 (data obrashcheniya: 07.10.2024).
5. Nurgaliev E.I. Tekhnologiya vozvedeniya monolitnyh vzryvoustojchivyh peremychek s primeneniem mineral'noj smesi «UGM» // Ezhegodnaya molodezhnaya konferenciya IU SO RAN: sb. tr. konf. Kemerovo: Ins-t uglya SO RAN, 2015. S. 59–70.
6. Tekhnologiya vozvedeniya izoliruyushchih, vodoupornyh i vzryvoustojchivyh peremychek na shahtah OAO «Yuzhnyj Kuzbass» / I.A. Shundulidi [i dr.] // Ugol'. 2005. № 6. S. 33–35.
7. Ageev V.G., Mariychuk I.F. Mathematical modeling of the stress state of a mine explosion-resistant bulkhead // ViTR, Poland. 2013. Vol. 31. P. 33–39.
8. Prochnostnye harakteristiki cementno-shlakovogo materiala vzryvoustojchivoj peremychki / G.I. Peftibaj [i dr.] // Podzemnaya ugledobycha XXI vek-2. 2018. № 11 (2). S. 432–442.
9. Laboratornye ispytaniya fibrobetona / N.D. Barsuk [i dr.] // Innovacionnye perspektivy Donbassa: materialy III Mezhdunar. nauch.-prakt. konf. T. 1: Problemy i perspektivy v gornom dele i stroitel'stve. Doneck, 2017. S. 91–94.
10. Prochnostnye i teplofizicheskie svojstva betona s polipropilenovoj fibroj v usloviyah temperaturnogo rezhima standartnogo pozhara / V.I. Golovanov [i dr.] // Pozharovzryvobezopasnost'. 2017. № 26 (5). S. 37–44.
11. Ageev V.G., Peftibaj G.I. Matematicheskaya model' napryazhenno-deformirovannogo sostoyaniya vzryvoustojchivoj peremychki pod dejstviem udarnyh voln // Nauchnyj vestnik NIIGD «Respirator». 2018. № 3 (55). S. 7–18.
12. Mihlin S.G. Variacionnye metody v matematicheskoj fizike. M.: Gostekhizdat, 1997. 422 s.
13. Fizicheskoe modelirovanie vozdejstviya gornogo davleniya na vzryvoustojchivuyu peremychku / G.I. Peftibaj [i dr.] // Problemy gornogo davleniya. 2017. № 32 (1). S. 20–31.
14. Ageev V.G., Peftibaj G.I., Marijchuk I.F. Napryazhennoe sostoyanie shahtnoj vzryvoustojchivoj peremychki // Nauchnyj vestnik NIIGD «Respirator». 2018. № 4 (55). S. 7–14.