Russian Federation
UDC 544.42
The possibility of ignition of polymeric materials under fire conditions depends on their chemical nature and kinetic parameters of the thermo-oxidative degradation process obtained in the study of materials under conditions as close as possible to fire conditions. The kinetics of thermo-oxidative degradation of thermoplastic polymers with different degrees of crystallinity (polypropylene, cellular polycarbonate, polyvinyl chloride, polystyrene foam, polyethylene terephthalate) was studied using the dynamic thermogravimetry method at a heating rate of 20 °K·min‒1. The aim of the study was to assess the applicability of the Broydo method for determining the kinetic parameters (activation energy, pre-exponential factor, reaction order) of the thermo-oxidative degradation process for further diagnostics of their ignition. The results of the studies showed that the order of the reactions of thermo-oxidative degradation of the studied polymers is equal to or close to unity. To diagnose the applicability of the Broydo method to the description of the kinetics of the thermo-oxidative degradation of polymers, the linearity of the graphical dependencies in the specified coordinates was checked. The possibility and expediency of using the Broido method as a simple and reliable for assessing the kinetic parameters of the process of thermo-oxidative destruction of polymers has been proven.
thermal-oxidative destruction, thermoplastic polymers, thermogravimetric analysis, activation energy, secondary fire sources
1. Bezzaponnaya O.V., Makarkin S.V., Gluhih P.A. Identifikaciya termoplastichnyh polimerov metodom sinhronnogo termicheskogo analiza // Pozharovzryvobezopasnost'. 2024. T. 33. № 1. S. 24–35.
2. Bezzaponnaya O.V. Opredelenie temperatury samovosplameneniya veshchestv i materialov metodom sinhronnogo termicheskogo analiza // Tekhnologii tekhnosfernoj bezopasnosti. 2024. № 2 (104). S. 177–187.
3. Charde S., Sonawane S., Sonawane S. Degradation kinetics of polycarbonate composites // Chem. Biochem. Eng. Q. 2018. № 32 (2). R. 151–165.
4. Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model / P.E. Sánchez Jiménez [et al.] // Journal of Thermal Analysis and Calorimetry. 2021. № 147 (3). P. 1–7.
5. Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics / T.B.Yu. Chen [et al.] // Journal of Analytical and Applied Pyrolysis. 2021. Vol. 153. P. 104931.
6. Simple direct method to obtain kinetic parameters for polymer thermal decomposition /D. Lázaro [et al.] // Appl. Sci. 2021. № 11. P. 11300.
7. Lobova S.F., Princeva M.Yu. Ocenka vliyaniya iskhodnyh dannyh na rezul'taty modelirovaniya rasprostraneniya goreniya pri ocenke effektivnosti raboty avtomaticheskoj ustanovki pozharnoj signalizacii // Nauch.-analit. zhurn. «Vestnik S.-Peterb. un-ta GPS MCHS Rossii». 2019. № 3. S. 70–80.
8. Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air / T. Fateh [et al.] // Journal of Analytical and Applied Pyrolysis. 2016. Vol. 120. P. 423–433.
9. Vozmozhnosti metodov termicheskogo analiza v primenenii k issledovaniyu kinetiki termicheskogo razlozheniya polimerov / A.A. Koptelov [i dr.] // Zhurnal prikladnoj himii. 2016. T. 89. Vyp. 9. S. 1163–1169.
10. Broido A.A. Simple, sensitive graphical method of treating thermogravimetric analysis data // Journal of Polymer Science. 1969. Pt. A-2. Vol. 7. № 10. P. 1761–1773.
11. Galuzo O.G., Eksanova S.Sh. Dolgovechnost' izdelij dlya inzhenerno-tekhnicheskih system v stroitel'stve // Zhurnal Mekhanika i tekhnologiya. 2022. № 1(6). S. 203–207.
12. Novyj podhod k analizu iniciirovannoj termodestrukcii polikarbonata /A.V. Kucenova [i dr.] // Himicheskaya fizika. 2020. T. 39. № 12. S. 74–80.
13. Zakonomernosti termookislitel'noj destrukcii polistirol'noj teploizolyacii ponizhennoj goryuchesti / A.A. Kobelev [i dr.] // Pozhary i chrezvychajnye situacii: predotvrashchenie, likvidaciya. 2018. № 2. S. 74–80.
14. Wellen R.M., Canedo E.L. On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET // Polymer Testing. 2014. № 40. P. 33–38.