Abstract and keywords
Abstract (English):
A pressing challenge in ensuring the safety of buildings and structures is the development of reliable and efficient fire alarm systems. Despite the widespread use of various automatic fire alarm systems, many sensors exhibit high sensitivity to non-target factors such as dust, humidity, and lighting, leading to false alarms. Contemporary research often employs generalized approaches to smoke detection but typically does not account for the dynamic features of smoke propagation and the influence of external interferences. As a result, the quantitative relationship between smoke concentration, false factors, and automatic fire alarm systems response time remains unresolved. The aim of this study is to develop a mathematical model describing this relationship and an algorithm that enhances the accuracy and reliability of sensor activation. A mathematical model has been developed to describe convection and diffusion processes of smoke in an enclosed space, as well as the influence of external factors on the sensor signal. Equations are provided for calculating aerosol concentration, and a mathematical signal model is presented that incorporates the impact of false factors and smoke concentration. A smoke detection algorithm was developed to predict sensor activation time and estimate the probability of false alarms. The proposed mathematical model of the sensor signal, which accounts for smoke concentration and false factors, along with the smoke detection algorithm, can be used to calibrate the sensitivity of fire detectors, improve the accuracy of smoke detection, and reduce the number of false alarms.

Keywords:
fire alarm, smoke concentration, sensors, false factors, convection-diffusion model, detection algorithm, sensitivity optimization
Text
Text (PDF): Read Download
References

1. EN 54-7:1994. Sistemy pozharnoj signalizacii. Chast' 7: Dymovye pozharnye izveshchateli; tochechnye izveshchateli po principu kontrolya rasseyannogo i prohodyashchego sveta ili ionizacionnye. URL: https://ru-bezh.ru/uploads/instrukcii/en54/EN%2054-7.pdf (data obrashcheniya: 11.12.2024).

2. GOST R 53325–2012. Tekhnika pozharnaya. Tekhnicheskie sredstva pozharnoj avtomatiki. Obshchie tekhnicheskie trebovaniya i metody ispytanij. URL: https://docs.cntd.ru/document/1200102066 (data obrashcheniya: 11.12.2024).

3. GOST 34698–2020. Izveshchateli pozharnye. Obshchie tekhnicheskie trebovaniya. Metody ispytanij. Dostup iz inform.-pravovogo portala «Garant».

4. Fire Alarm System Market, Share & Growth Analysis Report, 2033. URL: https://www.valuemarketresearch.com/report/fire-alarm-system-market (data obrashcheniya: 11.12.2024).

5. Pozhary i pozharnaya bezopasnost' v 2023 godu: inform.-analit. sb. / V.S. Goncharenko [i dr.]. Balashiha: VNIIPO MChS Rossii, 2024. 110 s.

6. Tanklevskij L.T., Babikov I.A., Tanklevskij A.L. Ob ocenke dostovernosti obnaruzheniya vozgoraniya // Problemy upravleniya riskami v tekhnosfere. 2021. № 3 (59). S. 28–33. EDN JVMNBY.

7. Pireeva V.S., Rahmatullina E.F., Permyakov A.V. Vliyanie koncentracii dymovyh chastic na obnaruzhenie vozgoraniya // Tekhnicheskie i tekhnologicheskie sistemy: materialy XV Mezhdunar. nauch. konf. «TTS-24». Krasnodar, 2024. S. 150–153.

8. Chitram S., Kumar S., Thenmalar S. Enhancing fire and smoke detection using deep learning techniques // Engineering Proceedings. 2024. T. 62. № 1. S. 7. DOI:https://doi.org/10.3390/engproc2024062007.

9. Predicting Fire Alarms in Smoke Detection using Neural Networks / M.W. Attia [et al.] // International Journal of Academic Information Systems Research (IJAISR). 2023. Vol. 7. № 10. P. 26–33.

10. Review Study on Recent Developments in Fire Sensing Methods / S. Sulthana [et al.] // IEEE Access. 2023. Vol. 11. P. 90269–90282. DOI:https://doi.org/10.1109/ACCESS.2023.3306812.

11. Katnikova Yu.S., Borisenko M.E., Lyubskaya O.G. Obzor datchikov pozharnoj signalizacii // Universum: tekhnicheskie nauki. 2021. № 4–1 (85). S. 10–12.

12. Rashoyan I.I. Analiz effektivnosti raboty tochechnyh dymovyh pozharnyh izveshchatelej // Simvol nauki. 2015. № 9–1. S. 111–114.

13. Kapusta N.K., Zvyagincev V.V. Issledovanie rabotosposobnosti populyarnyh modelej dymovyh optiko-elektronnyh pozharnyh izveshchatelej // Bezopasnost'-2021: sb. trudov Vseros. nauch.-prakt. konf. Chita, 2021. S. 112–116.

14. A capacitive particle-analyzing smoke detector for very early fire detection / B. Wang [et al.] // Sensors. 2024. T. 24. № 5. S. 1692. DOI:https://doi.org/10.3390/s24051692.

15. Povyshenie effektivnosti raboty sovremennyh tochechnyh opticheskih dymovyh izveshchatelej / A.I. Kicak [i dr.] // Bezpieczenstwo i Technika Pozarnicza. 2014. T. 36. № 4. S. 125–130. DOI:https://doi.org/10.12845/bitp.36.4.2014.13.

Login or Create
* Forgot password?