Russian Federation
Peter the Great Saint-Petersburg polytechnic University (Higher School of Artificial Intelligence, associate professor)
Russian Federation
A new approach to the expert analysis of steady-state electrical circuits using the concept of complex analytical voltage is proposed. The analysis is based on the idea that current in an electrical circuit flows as a result of the action of this analytical voltage. The actual voltage applied to an electrical circuit, as well as the voltage associated with it by the Hilbert conversion, are the result of vector decomposition of the analytical voltage into orthogonal components. The proposed approach avoids ambiguity in assessing the steady-state modes of an electrical circuit in cases where the shape of the voltage applied to the circuit does not match the shape of the current flowing through the circuit.
electrical circuits, analytical voltage, Hilbert conversion, steady-state modes, non-sinusoidal modes, full power, active power, reactive power, distortion power
1. Budeanu C.I. Probleme de la Presence des Puissance Reactives dans les Installations de Production et de Distribution d’Energie Electrique // CIGRE. SESSION. 1929. T. 3. P. 155.
2. Emde F. Entohmung. ETZ. 1930. H. 15. S. 533–535.
3. Fryze S. Wirk, Blind-und Scheinleistung in Electrischen mit Nichtsinus Formigen Verlauf von Strom und Spannung // Electrotechnische Zeitschrift. 1932. № 25. S. 596–599.
4. Chernyshev M.A. The law of primary currents of multiphase mutators // Electricity. 1940. № 6. P. 53–55.
5. Pukhov G.E. Power theory of a periodic multi-phase current system // Electricity. 1953. № 2. P. 56–61.
6. Zhemerov G.G. The effect of frequency converters with direct connection on the supply network // Elektrichestvo. 1968. № 4. P. 24–30.
7. Krogeris A.F., Treymanis E.P. Characteristic indicators for assessing the quality of electrical energy in converters // Izv. AN of the Latin SSR: Ser. physical and technical sciences. 1968. № 5. P. 102–110.
8. Posse A.V. Power balance in circuits containing valve converters, EMF and inductance sources // Proceedings of NIIPT. 1973. Iss. 19. P. 3–27.
9. Sharon D. Reactive Power Definition and Power Factor Improvement in Nonlinear System // Proc. IEEE. 1973. Vol. 20. № 8. P. 704–706.
10. Emanuel A.E. Energetical Factors in Power Systems with Nonlinear Loads // Archiv fur Electro Technik. 1977. B. 59. P. 183–189.
11. Mayevsky O.A. Energy parameters of valve converters. M.: Enegia. 1978. 320 p.
12. Page C.U. Reactive power in nonsinusoidal situations // IEEE Trans. on Instr. and Measurement. 1980. Vol. 29. № 4. P. 420–423.
13. Savinovsky Yu.A., Korolev S.Ya., Stratonov A.V. Towards the integral concept of «reactive power» // Higher Ed. studies. establishments. Energy industry. 1981. № 7. P. 55–57.
14. Drechsler R. Power factor and network losses for non-symmetrical and non-linear consumers // Electricity. 1982. № 2. P. 20–24.
15. Zharkov F.P. On one method of determining reactive power // Izv. USSR Academy of Sciences. Energy and transport. 1984. № 2. P. 73–81.
16. H. Akagi, Y. Kanazawa, A. Nabae. Instantaneous reactive power compensators comprising switching device without energy storage components // IEEE Trans. Industry Applications. 1984. Vol. IA-20. № 3. P. 625–630.
17. Chebotarev V.A. On reactive power compensation at the Stakhanov Ferroalloy Plant // Industrial Power Engineering. 1987. № 2. P. 51–52.
18. Kadomsky D.E. Active and reactive power – characteristics of average values of work and energy of periodic electromagnetic field in elements of nonlinear circuits // Electricity. 1987. № 7. P. 39–43.
19. Zhezhelenko I.V., Saenko Yu.L. Exchange of electromagnetic energy in a nonlinear medium // Izv. Energy industry. 1988. 399 s.
20. Demirchyan K.S. Reactive power in the case of non-sinusoidal functions. Ortho-power // Izv. RAN. Energy.1992. № 1. S. 15–38.
21. Makram E.B., Haines R.B., Girgis A.A. Effect of Harmonic Distortion in Reactive Power Measurement // IEEE Trans. Industry Applications. 1992. Vol. IA-28. № 4. P. 782–787.
22. Labuntsov V.A., Zhang Daizhong. Single-phase semiconductor compensators for the passive component of instantaneous power // Electricity. 1993. № 12. P. 20–32.
23. Berkovich E.I. Reactive power as an informational concept // Electricity. 1996. № 2. P. 51–58.
24. Farkhadzade E.M., Guliyev G.B. Calculation of indicators of the non-sinusoidal mode of the load node // Electricity. 2002. № 8. P. 20–25.
25. Zinoviev G.S. Generalization of direct methods for calculating the effective current values in circuits with non-sinusoidal voltage // Electricity. 2019. № 2. P. 40–47.
26. Agunov M.V. Energy processes in electric circuits with non-sinusoidal modes and their efficiency. Chisinau-Tolyatti: MoldNIITEI. 1997. 84 p.
27. Vakman D.E., Sedletsky R.M. Issues of synthesis of radar signals. M.: Soviet Radio. 1965. 256 p.
28. Bessonov L.A. Theoretical foundations of electrical engineering. Moscow: Higher School, 1973. 752 p.
29. Agunov M.V. Representation of electrical resistance components for nonlinear load models // Electricity. 2004. № 4. P. 48–50.
30. Agunov M.V., Agunov A.V. On energy relations in electric circuits with non-sinusoidal modes // Electricity. 2005. № 4. P. 53–56.
31. Energy characteristics of the system power source – welding arc / A.V. Agunov [et al.] // Welding production. 2002. № 7. C. 13–17.
32. Agunov M.V., Agunov A.V., Globenco I.G. Energy Balance in Electric Circuits with Non-Sinusoidal Voltage and Current // IEEE Trans. on Power Systems. 1997. Vol. 12. №. 4. P. 1507–1510.
33. Agunov M.V., Agunov A.V., Verbova N.M. A new approach to measuring electric power // Industrial Power Engineering. 2004. № 2. P. 30–33.
34. Verbova N.M., Agunov M.V. Power active filter-compensating device with a deflection control system // Shipbuilding. 2020. № 1. P. 16–18.




