Russian Federation
State fire service of EMERCOM of Russia (department of fire safety of transport of the Scientific research institute for advanced research and innovative technologies in the field of life safety, chief researcher)
Russian Federation
Russian Federation
UDC 656.089.2
The article considers issues related to improving the quality of decisions madein managing aviation flight safety in emergencies caused by landscape fires. Effective decision-making requires the integrated use of analytical methods, a large amount of data describing the stateof the environment and methods for interpreting the results. Improving the efficiency of managementin real time ensured by using predictive information on the state of the environment. To establish predictive values of environmental parameters based on retrospective information, a set of new significant parameters that affect both the course of an emergency and the safety of aviation flights identified. Information on the spatio-temporal distribution of the refractive index of the atmosphereand variations in its gradient used as significant parameters. This made it possible to establish spatial boundaries in the environment with extreme values of atmospheric parameters that have a negative impact on flight safety in emergencies caused by landscape fires. The technologies used in predictive management made it possible to analyze large data on atmospheric parameters, carry out expert assessments of environmental conditions from the point of view of their impact on flight safety,and forecast possible negative situations in the development of emergencies caused by landscape fires.
special aviation operations, environment, landscape fires, atmospheric parameters, predictive control, related processes
1. Chizhevskaya E.L. Prediktivnoe upravlenie bezopasnost'yu ob"ektov neftegazovogo kompleksa s primeneniem tekhnologij bespilotnyh letatel'nyh apparatov pri ugrozah chrezvychajnyh situacij // Tyumenskij nauchnyj zhurnal. 2024. № 2. S. 69–78.
2. Towards precision aviation emission modeling: A hybrid paradigm of convolutional neural networks and semi-empirical formulas for full flight phase gas pollutant indices / C. Longfei [et al.] // Science of The Total Environment. 2024. Vol. 957. P. 177414. DOI:https://doi.org/10.1016/j.scitotenv.2024.177414.
3. Shea Calculations and observations of solar particle enhancements to the radiation environment at aircraft altitudes / C.S. Dyer [et al.] // Adv. Space Res. 2003. № 32 (1). P. 81–93.DOI:https://doi.org/10.1016/S0273-1177(03)90374-7.
4. Extreme atmospheric radiation environments & single event effects / C. Dyer [et al.] //IEEe Trans. Nucl. Sci. 2017. P. 9499 (c). DOI:https://doi.org/10.1109/TNS.2017.2761258.
5. Radiation risk assessment for varying space weather conditions for very high altitude 'near space' tourism balloon flights / C.T. Rees [et al.] // J. Space Safety Eng. 2023. № 10 (2). P. 197–207. DOI:https://doi.org/10.1016/j.jsse.2023.03.002.
6. Timofeeva S.S., Garmyshev V.V. Landshaftnye pozhary v Irkutskoj oblasti: ekologicheskie posledstviya // HKHI vek. Tekhnosfernaya bezopasnost'. 2022. T. 7. № 2 (26). S. 179–188.DOI:https://doi.org/10.21285/2500-1582-2022-2-179-188.
7. Asharapova D.O., Timofeeva S.S. Ocenka emissii zagryaznitelej pri lesnyh pozharah(na primere Irkutskoj oblasti) // Bezopasnost' – 2024: materialy XXIX Vseros. studencheskoj nauchn.-prakt. konf. s mezhdunar. uchastiem. Irkutsk: Irkutskij nac. issled. tekhn. un-t, 2024. S. 183–186.
8. Timofeeva S.S., Garmyshev V.V., Zyryanov V.S. Ocenka ekologicheskoj nagruzkina atmosferu pri lesnyh pozharah v Irkutskoj oblasti // Bezopasnost' zhiznedeyatel'nosti. 2013.№ 10 (154). S. 33–38.
9. Postroenie traektorii rasprostraneniya SVCH-izlucheniya v neodnorodnoj atmosfere /V.Yu. Zhukov [i dr.] // Gidrometeorologiya i ekologiya. 2025. № 78. S. 20–41. DOI:https://doi.org/10.33933/2713-3001-2025-78-20-41.
10. Bobrov V.N., Nahmanson G.S. Vliyanie vertikal'nogo raspredeleniya pokazatelya prelomleniya atmosfery na vizual'noe opredelenie mestopolozheniya vzletno-posadochnoj polosys borta vozdushnogo sudna // Meteorologiya i gidrologiya. 2003. № 1. S. 58–63.
11. Medvedev D.V., Matveev A.V. Informacionnaya model' podderzhki prinyatiya reshenijpo reagirovaniyu na landshaftnye pozhary // Sibirskij pozharno-spasatel'nyj vestnik. 2025. № 1 (36).S. 117–125. DOI:https://doi.org/10.34987/vestnik.sibpsa.
12. Bobrov V.N., Bryushinin A.O. Mathematical Modeling of Refractive Propertiesof the Atmosphere in the Optical Wavelength Range // Proceedings of the 2020 IEEE Conferenceof Russian Young Researchers in Electrical and Electronic Engineering, EIConRus. Saint-Petersburg and Moscow: Institute of Electrical and Electronics Engineers Inc., 2020. P. 2247–2251.DOI:https://doi.org/10.1109/EIConRus49466.2020.9039056.
13. Shinkarenko S.S., Berdengalieva A.N. Geoinformacionnyj analiz landshaftnyh pozharovv Volgo-Ahtubinskoj pojme // Nauchno-agronomicheskij zhurnal. 2019. № 1 (104). S. 14–17.
14. Ocenka vremennyh ryadov posledstvij landshaftnyh pozharov na territorii Irkutskoj oblasti / V.V. Garmyshev [i dr.] // Bezopasnost' zhiznedeyatel'nosti. 2025. № 4 (292). S. 39–44.




