TYPOLOGY OF CAUSES LEADING TO FIRE IN LITHIUM-ION BATTERIES OF ELECTRIC VEHICLES
Abstract and keywords
Abstract (English):
A brief overview of the causes leading to ignition of lithium-ion batteries of electric vehicles is presented. It is determined that ignition of batteries is provoked by excessive mechanical, electrical, temperature effects, the presence of manufacturing defects, aging and immersion in salt water. In the context of the consideration of the operating temperature mode, a little-studied parameter is indicated – the homogeneity of the battery structure, which affects the safety of the entire electric vehicle. A typological diagram of the causes initiating ignition of a lithium-ion battery of an electric vehicle is graphically presented.

Keywords:
lithium-ion battery, electric vehicle, thermal runaway, ignition
Text
Text (PDF): Read Download
References

1. Ataev M.G., Muhammetnazarov A.S., Esenov M.P. Perekhod k vozobnovlyaemym istochnikam energii // CETERIS PARIBUS. 2024. № 10. S. 26–28.

2. Kulova T.L., Skundin A.M. Problemy razvitiya litij-ionnyh akkumulyatorov v mire i Rossii // Elektrohimicheskaya energetika. 2023. № 3. S. 111–120. DOI:https://doi.org/10.18500/1608-4039-2023-23-3-111-120.

3. State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review / Yu. Liu [et al.] // Protection and Control of Modern Power Systems. 2023. T. 8. № 3. S. 1–17. DOI:https://doi.org/10.1186/s41601-023-00314-w.

4. Orlov O.I., Komel'kov V.A. Pozharnaya opasnost' litij-ionnyh akkumulyatorov // Sovremennye problemy grazhdanskoj zashchity. 2023. № 4 (49). S. 177–189.

5. Marchuk N.A., Kulencan A.L. Analiz osobennostej sostoyaniya klimata v Rossii // Economics. 2020. № 4 (47). S. 11–16.

6. A review on thermal management of lithium-ion batteries for electric vehicles / X. Zhang [et al.] // Energy. 2022. Vol. 238. P. 121652. DOI:https://doi.org/10.1016/j.energy.2021.121652.

7. Karimi G., Li X. Thermal management of lithium‐ion batteries for electric vehicles // International Journal of Energy Research. 2013. Vol. 37. № 1. P. 13–24. DOI:https://doi.org/10.1002/er.1956.

8. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system / J. Zhang [et al.] // Journal of Power Sources. 2020. Vol. 480. P. 229116. DOI:https://doi.org/10.1016/j.jpowsour.2020.229116.

9. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material / D. Ouyang [et al.] // RSC advances. 2019. Vol. 9. № 16. P. 9053–9066. DOI:https://doi.org/10.1039/C9RA00490D.

10. Review of Lithium-Ion Battery Internal Changes Due to Mechanical Loading / M. Cortada-Torbellino [et al.] // Batteries. 2024. Vol. 10. № 7. P. 258. DOI:https://doi.org/10.3390/batteries10070258.

11. Questions and answers relating to lithium-ion battery safety issues / W. Huang [et al.] // Cell Reports Physical Science. 2021. Vol. 2. № 1. P. 1–12. DOI:https://doi.org/10.1016/j.xcrp.2020.100285.

12. Kanonin Yu.N., Lyshchik A.V. Pozharnaya opasnost' elektromobilej // BRNI. 2023. № 1. P. 38–51. DOI:https://doi.org/10.20295/2223-9987-2023-1-38-51.

13. Effects of vibrations and shocks on lithium-ion cells / M.J. Brand [et al.] // Journal of Power Sources. 2015. Vol. 288. P. 62–69. DOI:https://doi.org/10.1016/j.jpowsour.2015.04.107.

14. A review on the key issues of the lithium ion battery degradation among the whole life cycle / X. Han [et al.] // ETransportation. 2019. Vol. 1. P. 100005. DOI:https://doi.org/10.1016/j.etran.2019.100005.

15. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review / G. Zhang [et al.] // Renewable and Sustainable Energy Reviews. 2021. Vol. 141. P. 110790. DOI:https://doi.org/10.1016/j.rser.2021.110790.

16. Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway / Yu. Yang [et al.] // Advances in Applied Energy. 2023. Vol. 11. P. 100146. DOI:https://doi.org/10.1016/j.adapen.2023.100146.

17. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions / D. Ren [et al.] // Applied Energy. 2019. Vol. 250. P. 323–332. DOI:https://doi.org/10.1016/j.apenergy.2019.05.015.

18. An experimental study on the mechanical characteristics of Li‐ion battery during overcharge‐induced thermal runaway / P. Xu [et al.] // International Journal of Energy Research. 2021. Vol. 45. № 14. P. 19985–20000. DOI:https://doi.org/10.1002/er.7072.

19. Kalaikkanal K., Gobinath N., Mohan R. Influence of swelling on the safety aspects of electric vehicle batteries–Short Review // IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2023. Vol. 1161. № 1. P. 012010. DOI:https://doi.org/10.1088/1755-1315/1161/1/012010.

20. Trocenko A.A. Nekotorye aspekty himizma samovozgoraniya i samovosplameneniya // Sovremennye tekhnologii obespecheniya grazhdanskoj oborony i likvidacii posledstvij chrezvychajnyh situacij. 2016. № 1 (7). P. 284–288.

21. Influence of over-discharge on the lifetime and performance of LiFePO 4/graphite batteries / Yu. Zheng [et al.] // RSC advances. 2016. Vol. 6. № 36. P. 30474–30483. DOI:https://doi.org/10.1039/C6RA01677D.

22. An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times / C. Tao [et al.] // Journal of Cleaner Production. 2020. Vol. 242. P. 118539. DOI:https://doi.org/10.1016/j.jclepro.2019.118539.

23. Modeling degradation of lithium-ion batteries considering cell-to-cell variations / D. Galatro [et al.] // Journal of Energy Storage. 2021. Vol. 44. P. 103478. DOI:https://doi.org/10.1016/j.est.2021.103478.

24. Skundin A.M., Kulova T.L., Grigor'eva O.Yu. Litij-ionnye akkumulyatory: ucheb. posobie. M.: Izd-vo MEI, 2022. 100 s.

25. Lithium ion battery degradation: what you need to know / J.S. Edge [et al.] // Physical Chemistry Chemical Physics. 2021. Vol. 23. № 14. P. 8200–8221. DOI:https://doi.org/10.1039/D1CP00359C.

26. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules / B. Kenney [et al.] // Journal of Power Sources. 2012. Vol. 213. P. 391–401. DOI:https://doi.org/10.1016/j.jpowsour.2012.03.065.

Login or Create
* Forgot password?