Russian Federation
Volgograd, Russian Federation
Transitional climate risks are caused by the transition to a low-carbon economy. Management of this group of risks requires the development of effective solutions to reduce the carbon footprint, including indirect energy emissions, which is impossible without reliable estimates. The accuracy of estimation of indirect greenhouse gases emissions from electricity largely depends on the choice of specific indicators of CO2 emissions per unit of electricity consumed. The article presents a comparative analysis of the values of such indicators: regional coefficients of indirect energy emissions of CO2, calculated on the basis of the Methodological Guidelines by the Ministry of Natural Resources and Environment of Russia, CO2 emission coefficient for the first synchronous zone of The Unified Energy System of Russia and CO2 emission coefficients for two price zones of The Unified Energy System of Russia, published by JSC «Trading System Administrator of Wholesale Electricity Market Transactions». The results obtained may be useful in selecting optimal parameters for calculating indirect greenhouse greenhouse gases emissions from electricity.
indirect energy emissions of greenhouse gases, grid-average factor, Scope 2
1. Loginova V.S. Podhody k uchetu perekhodnyh klimaticheskih riskov v stoimosti kompanij // Nauchnye issledovaniya ekonomicheskogo fakul'teta. 2024. T. 16. № 3 (53). P. 47–58.
2. Bolton R., Kacperczyk M. Do investors care about carbon risk? // Journal of Financial Economics. 2021. Vol. 142. № 2. P. 517–549.
3. Keen M., Parry I., Roaf J. Border carbon adjustments: rationale, design and impact // Fiscal Studies. 2022. Vol. 43. P. 209–234.
4. Pinaev V.E., Uhova V.N. Analiz fizicheskih i perekhodnyh riskov, svyazannyh s izmeneniem klimata i obzor mitigacionnyh meropriyatij v razlichnyh otraslyah promyshlennosti // Vestnik evrazijskoj nauki. 2024. T. 16. № 4.
5. Sundha P., Melkania U. Carbon footprinting: a tool for environmental management // International Journal of Agriculture // Environment and Biotechnology. 2016. № 9 (2). P. 247–257.
6. Ermakova M.S. Vybrosy parnikovyh gazov: raskladyvaem po polochkam // Ekologiya proizvodstva. 2021. № 2 (199). P. 98–105.
7. Morozova I.A., Semova E.V. Sovremennye trebovaniya k uchetu kosvennyh vybrosov parnikovyh gazov organizacii // Standarty i kachestvo. 2022. № 8. P. 22–27.
8. Morozova I.A., Syomova E.V. Ob osnovnyh metodah kolichestvennogo opredeleniya ob"ema kosvennyh energeticheskih vybrosov parnikovyh gazov // Ohrana atmosfernogo vozduha. Novye podhody i puti resheniya: sb.trudov k XXI Mezhdunar. ekologicheskomu kongressu «Atmosfera-2019». SPb.: Politekh-Press, 2019. P. 129–138.
9. Fallahi Z., Plewe K., Smith A.D. Energy-related emissions from commercial buildings: Comparing methods for quantifying temporal indirect emissions associated with electricity purchases // Sustainable Energy Technologies and Assessments. 2018. Vol. 30. P. 150–163.
10. Ataev Z.A. Struktura edinoj energosistemy Rossii v postsovetskij period // Izvestiya Rossijskoj akademii nauk. Ser. geograficheskaya. 2023. T. 87. № 3. P. 348–357.
11. Kahal'nikov M.V., Suhareva E.V., Rogalev N.D. Sovremennaya struktura elektroenergeticheskogo rynka Rossii // Ekonomicheskie nauki. 2018. № 167. P. 50–53.




