THE EFFECT OF REAGENT AND NON-REAGENT MODIFICATION OF THE DISPERSED MEDIUM AND THE CHEMICAL PROPERTIES OF THE SURFACE OF MINERALIZERS ON THE FIRE-FIGHTING SPECIFICATIONS OF AIR-MECHANICAL FOAMS
Abstract and keywords
Abstract (English):
The article discusses the actual problem of increasing the efficiency of air-mechanical foam in firefighting by modifying the dispersed medium. Methods of reagent (nanochemical) and non-reagent (electrophysical) effects on the surface structure of the air-mechanical foam in order to improve its fire-fighting characteristics are proposed. The effect of hydrophilicity and hydrophobicity of nanomineralizers introduced into the composition of the air-mechanical foam, as well as electrophysical treatment of a dispersed medium, is investigated. It has been experimentally confirmed that electrophysical treatment helps to increase the foam multiplicity, while the chemical nature of the mineralizer surface affects its stability. Hydrophilic mineralizers have been found to improve the adsorption of surfactants by reducing the amount of surface tension in water. Experimental results are presented that demonstrate the effect of modification of both the dispersed medium and the chemical properties of the surface on the kinetics of freezing of air-mechanical foam and H2O, which especially important for use in the Arctic region. Hydrophilic nanomineralizers have been shown to increase the foam's resistance to low temperatures. Thermal analysis of the inorganic hydrophilic mineralizer marshalite, finely dispersed (SiO2), showed that the presence of endoeffects (400–500 °C and 600–700 °C) promotes the removal of excess heat in the processes of polymorphic transitions of silicon dioxide. The results obtained indicate the prospects of using the proposed modification methods to improve the fire-fighting properties of the air-mechanical foam, especially at low temperatures.

Keywords:
air-mechanical foam, dispersed medium, mineralizers, nanoparticles, electrophysical treatment, fire extinguishing, foam expansion ratio, foam stability, hydrophilic mineralizers, hydrophobic mineralizers, freezing kinetics, nanocarbon, surface tension
Text
Text (PDF): Read Download
References

1. Nanotekhnologii ispytanij i diagnostiki materialov, konstrukcij i elementov inzhenernyh sistem zdanij s ognezashchitnymi pokrytiyami. Chast' 1 / V.V. Belozerov [i dr.] // Nanotekhnologii v stroitel'stve: nauchnyj internet-zhurnal. 2020. T. 12. № 3. S. 174–184. DOI:https://doi.org/10.15828/2075-8545-2020-12-3-174-184. EDN ARREJV.

2. Volik A.S., Kvashnin A.V., Ivahnyuk G.K. Vliyanie elektricheskogo polya na ognetushashchie svojstva vozdushno-mekhanicheskoj peny // Problemy upravleniya riskami v tekhnosfere. 2020. № 3 (55). S. 103–107. EDN BZSSAC.

3. Kumar A., Singh R., Sharma P. Role of hydrophilic and hydrophobic nanoparticles in foam-based fire suppression systems // Fire Technology. 2022. Vol. 58 (4). P. 1567–1584. DOI:https://doi.org/10.1007/s10694-022-01245-z.

4. Bulatov N.N. Kolloidno-himicheskie i pozharno-tekhnicheskie svojstva CO2-gazonapolnennyh kompressionnyh pen // XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2024. T. 13. № 3 (67). S. 194–198. EDN DDDGIC.

5. Mironov V.L., Klimov A.V. Elektrofizicheskie metody vozdejstviya na vodnye rastvory PAV // Kolloidnyj zhurnal. 2022. T. 84 (3). S. 312–320. DOI:https://doi.org/10.31857/S002329442203009X.

6. Issledovanie novyh vysokoeffektivnyh reagentov dlya pennogo drenazha gazovyh skvazhin (obzor) / Y.Q. Sun [et al.] // Neftekhimiya. 2023. T. 63. № 5. S. 745–759. DOI:https://doi.org/10.31857/S002824212305012X. EDN SAIXJO.

7. Elektrofizicheskie i nanohimicheskie innovacii v obespechenii energo- resursosberezheniya, promyshlennoj i ekologicheskoj bezopas nosti / D.S. Azimov [i dr.] // Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). 2018. № 46 (72). S. 120–122. EDN YTDYDR.

8. Alekseik E.B., Savenkova A.E., Gemish Z. Vliyanie peremennyh elektricheskih polej na processy sozdaniya i stabilizacii vozdushno-mekhanicheskih pen // Nauchno-analiticheskij zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii». 2013. № 4. S. 44–48. EDN RSMACZ.

9. Cybul'skij A. S., Chernyaev A.V. Elektrofizicheskie metody ochistki vody // Ekologiya promyshlennogo proizvodstva. 2014. № 2 (86). S. 27–31. EDN ULWCZJ.

10. Mechanical properties of two-stage concrete modified by silica fume / H.S. Abdelgader [et al.] // Magazine of Civil Engineering. 2019. № 5 (89). P. 26–38. DOI:https://doi.org/10.18720/MCE.89.3. EDN ATOSCY.

11. Volik A.S., Bulatov N.N., Sheshina N.I. Vliyanie elektrofizicheskoj obrabotki vody na pozharno-tekhnicheskie harakteristiki modificirovannoj vozdushno-mekhanicheskoj peny // XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2023. T. 12. № 4 (64). S. 288–293. EDN IITSGS.

12. Bibik E.E. Sbornik zadach po kolloidnoj himii: ucheb. posobie. SPb.: SPbGTI, 2019. 57s.

13. A new experiment for investigating evaporation and condensation of cryogenic propellants / K. Bellur [et al.] // Cryogenics. 2016. №. 74. S. 131–137.

14. Analysis on theeffects of higt expansion foam on evaporation rate of the LNG 2nd ed / X. Guo [et al.]. El sevier Inc. 2021. 137r.

15. Lutz W. Zeolite Y: Synthesis, Modification, and Properties – A Case Revisited // Advances in Materials Science and Engineering. 2014. № 1. P. 1–20.

16. Improving the stabi lity of high expansion foam used for LNG vapor risk mitigation using exfoliated zirconium phosphate nanoplates / P. Krishnana [et al.] // Process Safety and Environmental Protection. 2019. № 123. P. 48–58.

Login or Create
* Forgot password?