Russian Federation
The article addresses hidden attachments in wired lines that remain invisible to logical monitoring and can cause information leakage and service disruption. The aim is to develop a device identification system that detects interventions and assigns the connected object to a class using electromagnetic signal features while keeping the channel in service. The approach relies on bench trials on typical lines, a combination of active probing and passive observation, acquisition of a reference state before connection and an observed state after connection, construction of a time-frequency signal portrait, adaptive amplitude thresholding, normalization for noise and temperature, a fixed line profile, and matching against a reference library. The work identifies informative spectral bands and temporal windows, demonstrates separability of representative intervention scenarios, and confirms feature reproducibility under changing external conditions, which follows from combining probing with passive capture and applying a unified processing rule. The conclusion is that physical-layer control can be integrated into routine operations with operator-readable decisions and transferable settings, making the system suitable for monitoring in corporate and industrial networks and for technical information protection.
wired lines, device detection, identification, spectral analysis, amplitude-frequency characteristics, active probing, parametric monitoring, hardware-software system, network monitoring, technical information protection
1. Kalinin S.A. Metodika vyyavleniya neavtorizovannyh ustrojstv v provodnyh setyah // Zashchita informacii. Konfidencial'nost'. 2019. № 4. S. 22–27.
2. Lebedev V.V. Teoriya informacii i kodirovaniya. M.: Radiotekhnika, 2004. 395 s.
3. Chernov I.I., Korzh V.Ya. Elektromagnitnaya sovmestimost': Uchebnik. M.: Goryachaya liniya Telekom, 2011. 360 s.
4. Coates P., McBride R. Signal Processing Techniques for Measurement. Elsevier, 2006. 298 p.
5. Kapralova I.A., Ignat'ev M.S. Metody analiza signalov v reflektometricheskih sistemah // Vestnik MGTU im. N.E. Baumana. Ser. Radioelektronika. 2019. № 3. S. 46–54.
6. Andreev V.A., Kravchenko V.M. Informacionnye i izmeritel'nye sistemy. M.: Energoatomizdat, 2006. 316 s.
7. 10 Essential Spectral Analysis Tools Boosting Signal Detection. URL: https://www.numberanalytics.com/blog/10-essential-spectral-analysis-tools (data obrashcheniya: 20.08.2025).
8. Muhina I.A. Analiz metodov zashchity lokal'nyh vychislitel'nyh setej ot nesankcionirovannogo dostupa // Informacionnye tekhnologii i bezopasnost'. 2018. № 1 (15). S. 25–31.
9. Medium. Anomaly Detection in Time Series Using Statistical Analysis URL: https://medium.com/booking-com-development/anomaly-detection-in-time-series-using-statistical-analysis-cc587b21d008 (data obrashcheniya: 29.08.2025).
10. D'yakov V.I. Elektricheskie cepi: uchebnik. M.: Forum, 2010. 540 s.
11. Analiz parametrov radiosignalov dlya identifikacii istochnikov URL: https://doklady.bsuir.by/jour/article/view/2592 (data obrashcheniya: 09.09.2025).
12. Kuklin A.A., Kukushkin A.V. Radiotekhnicheskie izmereniya: ucheb. posobie. M.: Radio i svyaz', 2006. 284 s
13. Fedorov A.Yu. Identifikaciya i klassifikaciya ustrojstv v liniyah svyazi na osnove signal'nyh harakteristik // Elektrosvyaz'. 2022. № 5. S. 37–41.
14. Slovesnov N.A., Mirsatov S.F., Svetlichnyj V.V. Issledovanie metodov identifikacii oborudovaniya v sistemah zashchity informacii provodnyh setej svyazi // Informacionnaya bezopasnost' telekommunikacionnyh sistem.2014. № 4. S. 53–60.
15. Grebenyuk A.A. Osnovy teorii pomekhoustojchivosti. M.: Goryachaya liniya Telekom, 2005. 265 s.



