ANALYSIS OF METHODS AND APPROACHES FOR PREDICTING THE DEVELOPMENT OF INCIDENTS BASED ON INFORMATION FROM SOCIAL NETWORKS
Abstract and keywords
Abstract (English):
This article analyzes methods and approaches for predicting incident development using social media information. It demonstrates the relevance of the research topic and demonstrates that existing methods and approaches have several shortcomings that prevent them from being adequately utilized to address the needs of EMERCOM of Russia. In the article's conclusion, the author concludes that it would be beneficial to develop a new, proprietary methodology that would address the identified shortcomings.

Keywords:
social networks, forecasting, incidents, emergency services, information technology
Text
Text (PDF): Read Download
References

1. Begen P.N., Nizomutdinov B.A. Razrabotka metoda izvlecheniya adresa iz teksta soobshchenij o proisshestviyah v social'nyh setyah dlya formirovaniya geoprivyazannyh dannyh // Al'manah nauchnyh rabot molodyh uchyonyh universiteta ITMO. SPb., 2021. S. 152–155.

2. Ageeva A.A. Analiz tonal'nosti postov soobshchestv social'noj seti «Vkontakte» // Obshchestvo. Nauka. Innovacii (NPK-2022): sb. statej XXII Vseros. nauch.-prakt. konf.: v 2-h t. Kirov, 2022. S. 172–179.

3. Fokina A.I., Chepovskij A.A., Chepovskij A.M. Ispol'zovanie platformy TXM korpusnogo analiza dlya analiza tekstov soobshchestv social'nyh setej // Vestnik NGU. Ser.: Informaconnye tekhnologii. 2023. T. 21. № 2. S. 29–38. DOI:https://doi.org/10.25205/1818-7900-2023-21-2-29-38.

4. Metodika analiza dannyh o chrezvychajnyh situaciyah v social'nyh setyah / A.V. Vostryh [i dr.] // Sovremennye naukoemkie tekhnologii. 2023. № 6. S. 81–88. DOI:https://doi.org/10.17513/snt.39635.

5. Vostryh A.V., Samarin M.A., Maksimov A.V. Analiz sushchestvuyushchih podhodov polucheniya i obrabotki dannyh iz social'nyh setej // Nauchno-analiticheskij zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii». 2023. № 1. S. 109–120.

6. Vostryh A.V., Medvedev D.V. Algoritm mnogokriterial'nogo analiza tekstovoj informacii // Nauchno-analiticheskij zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoj protivopozharnoj sluzhby MCHS Rossii». 2023. № 3. S. 118–128.

7. Vostryh A.V., Samarin M.A., Modeli opisaniya informacionnyh resursov social'nyh setej // Student: nauka, professiya, zhizn': materialy X Vseros. studencheskoj nauch. konf. s mezhdunar. uchastiem: v 5-ti ch. Omsk, 2023. S. 288–293.

8. Ding J., Liu L., Wang Yu. Stochastic Game Model for Information Dissemination of Emergency Events in Social Network // Intelligence and Security Informatics (ISI), IEEE International Conference. 2013. P. 166–168.

9. Sinev M.P. Algoritmicheskij podhod k analizu profilya pol'zovatelya social'noj seti na osnove mul'timodal'nyh temporal'nyh dannyh // XXI vek: itogi proshlogo i problemy nastoyashchego plyus. 2020. T. 9. № 1 (49). S. 14–20.

10. Batura T.V. Models and methods of analysis of computer social networks // Software products and systems. 2013. № 3. P. 24–39.

11. Gandon F., Buffa M., Corby O. Semantic Social Network Analysis // Proc. 8th Intern. Semantic Web Conf. 2009. P. 180–195.

12. Zhurafski D., Martin Dzh. H. Speech and Language Processing. URL: https://web.stanford.edu/~jurafsky/slp3/ (data obrashcheniya: 20.09.2025).

13. Cambria E., White B. Jumping NLP Curves: A Review of Natural Language Processing Research // IEEE Computational Intelligence Magazine. 2014. T. 9. № 2. S. 48–57.

14. Liu B. Sentiment Analysis and Opinion Mining // Synthesis Lectures on Human Language Technologies. 2012. № 5 (1). 167 s.

15. Feldman R. Techniques and Applications for Sentiment Analysis // Communications of the ACM. 2013. № 56 (4). P. 82–89.

16. Bishop C.M., Bishop K.M. Pattern Recognition and Machine Learning. Springer. 2006. P. 19–24.

17. Zhang Yu., Zhang D. Deep Learning for Social Media Data Analysis // IEEE Transactions on Neural. 2018. P. 81–94.

18. Leskovec J., Kleinberg J., Faloutsos C. Graphs over time: Densification laws, shrinking diameters and possible explanations // Proc. 11th ACM SIGKDD Intern. Conf. on Knowledge Discovery in Data Mining. NY. 2005. P. 177–187.

19. Vincent D.B., Jean-Loup G., Renaud L. Fast unfolding of communities in large networks // arXiv: 0803.0476v2. 2008. P. 594–609.

20. Airoldi E.M. Mixed membership stochastic blockmodels // Learn. Res. 9. 2008. P. 1981–2014.

Login or Create
* Forgot password?