Russian Federation
employee
Russian Federation
UDC 629.3
UDC 628.9
The study aims to provide a scientific justification for methods to reduce the carbon footprint and achieve climate neutrality of a fire engine fleet as a significant source of environmental impact, using the Krasnoyarsk Territory as a case study. A set of methods was applied, including statistical analysis of the fleet structure, experimental measurements of exhaust smoke opacity, and assessment of climate impact considering the global warming potential of short-lived climate forcers. It was found that the fire engine fleet of the Krasnoyarsk Territory is characterized by a significant proportion (43 %) of outdated Euro-0 and Euro-1 class vehicles, which form the baseline environmental load. For the first time, a regression dependence of exhaust smoke opacity on the total mileage (R² = 0,74) has been identified and statistically substantiated, forming the basis for a predictive emissions management method. The total annual carbon footprint from the fleet of outdated diesel fire engines was quantitatively assessed at 7,734 tons of CO₂-equivalent. A key finding is that the contribution of short-lived climate forcers (soot and NOₓ) exceeds the direct impact of CO₂ by more than 2.5 times. The scientific novelty lies in the development of a comprehensive methodology that integrates operational and technical parameters of fire engine use with an assessment of their full climate impact, which has not previously been applied to EMERCOM special equipment. The practical significance consists in creating a toolkit to support management decisions on the ecological transformation of the fleet, including priority vehicle renewal and optimization of maintenance to reduce the carbon footprint.
climate neutrality, carbon footprint, environmental safety, fire engines, soot, global warming potential, emissions management
1. Galimova K.R. Ekologicheskaya bezopasnost' v ekspluatacii pozharnoj i avarijno-spasatel'noj tekhniki // Tendencii razvitiya nauki i obrazovaniya. 2024. № 108-10. S. 27–29. DOIhttps://doi.org/10.18411/trnio-04-2024-530. EDN QQCEIE.
2. Explainable Machine Learning Prediction of Vehicle CO2 Emissions for Sustainable Energy and Transport / D. Yuan [et al.] // Energies. 2025. Vol. 18. № 20. P. 5408. DOI:https://doi.org/10.3390/en18205408.
3. Lozhkina O.V. Monitoring i prognozirovanie opasnogo tekhnogennogo zagryazneniya atmosfery parnikovymi gazami transporta / pod obshch. red. B.V. Gavkalyuka. SPb.: S.-Peterb. uni-t GPS MCHS Rossii, 2023. 166 s.
4. Gavkalyuk B.V., Lozhkin V.N. Povyshenie effektivnosti agregatov mobil'nyh sredstv dostavki specializirovannogo oborudovaniya i lichnogo sostava dlya tusheniya pozharov // Problemy upravleniya riskami v tekhnosfere. 2024. № 1 (69). S. 107–113. DOI:https://doi.org/10.61260/1998-8990-2024-1-107-113.
5. Measuring NOx during periodic technical inspection of diesel vehicles / Ja. Franzetti [et al.] // Environmental Sciences Europe. 2024. Vol. 36. № 1. P. 175. DOI:https://doi.org/10.1186/s12302-024-01002-8.
6. Pandey A., Pandey G., Mishra R.K. An in situ exploratory analysis of diesel cars' emission: way forward on policy evaluation // Environmental Science and Pollution Research. 2022. Vol. 29. P. 84434–84450. DOI:https://doi.org/10.1007/s11356-022-21719-4.
7. Lozhkina O.V., Mal'chikov K.B. Bortovoj monitoring vybrosov opasnyh (zagryaznyayushchih) veshchestv legkovym i legkim kommercheskim avtotransportom // Problemy upravleniya riskami v tekhnosfere. 2024. № 2 (70). S. 193–206. DOI:https://doi.org/10.61260/1998-8990-2024-2-193-206.
8. Lozhkina O.V., Mal'chikov K.B. Cravnitel'nyj analiz probegovyh vybrosov avtomobilej na razlichnyh vidah topliva pri dorozhnyh zatorah // Vestnik grazhdanskih inzhenerov. 2024. № 2 (103). S. 133–143. DOI:https://doi.org/10.23968/1999-5571-2024-21-2-133-143.
9. Mal'chikov K.B., Lozhkina O.V. Monitoring i prognozirovanie opasnogo zagryazneniya vozduha malomernymi sudami i avtotransportom // Vestnik Moskovskogo avtomobil'no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI). 2025. № 1 (80). S. 55–62.
10. Gavkalyuk B.V., Lozhkin V.N., Smirnov A.S. Teoriya i praktika obespecheniya bezopasnosti primeneniya v usloviyah chrezvychajnyh situacij silovyh ustanovok pozharnyh avtomobilej 4-5 pokolenij // Problemy upravleniya riskami v tekhnosfere. 2023. № 2 (66). S. 8–15.
11. Usovershenstvovannaya metodika raschetnogo monitoringa vybrosov parnikovyh gazov ot deyatel'nosti avtomobil'nogo i vnedorozhnogo transporta v Rossijskoj Federacii / Yu.V. Trofimenko [i dr.] // Nauchnyj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoj aviacii. 2025. T. 28. № 1. S. 78–96. DOI:https://doi.org/10.26467/2079-0619-2025-28-1-78-96.
12. Trofimenko Yu.V., Filippova R.V., Fen'kov I.A. Zarubezhnyj opyt vnedreniya elektrobusnogo transporta v megapolisah: perekhod na nizkouglerodnye transportnye sredstva // Mir transporta i tekhnologicheskih mashin. 2025. № 2-1 (89). S. 87–92. DOI:https://doi.org/10.33979/2073-7432-2025-2-1(89)-87-92.
13. Deyanov D.A., Trofimenko Yu.V. Metodika ocenki energopotrebleniya i vybrosov parnikovyh gazov transportnym potokom na ulichno-dorozhnoj seti // Vestnik Moskovskogo avtomobil'no-dorozhnogo gosudarstvennogo tekhnicheskogo universiteta (MADI). 2024. № 3 (78). S. 68–77. EDN: https://elibrary.ru/KCNOFL.
14. Aktualizaciya ocenok vybrosov parnikovyh gazov ot avtomobil'nogo transporta v nacional'nom kadastre za 2010-2021 gg. / V.M. Lytov [i dr.] // Ekologicheskij monitoring i modelirovanie ekosistem. 2024. T. 35. № 1-2. S. 101–123. DOI:https://doi.org/10.21513/0207-2564-2024-1-2-101-123.
15. Sacuk I.V. Zakonomernosti raspredeleniya i tekhnicheskogo sostoyaniya ekspluatiruemyh pozharnyh avtomobilej po pokazatelyam konstruktivnoj bezopasnosti silovyh ustanovok // Sibirskij pozharno-spasatel'nyj vestnik. 2022. № 2 (25). S. 31–38. DOI:https://doi.org/10.34987/vestnik.sibpsa.2022.27.97.004.
16. Dejneka E.G., Lozhkina O.V. Analiz i obobshchenie statisticheskih i issledovatel'skih dannyh po pozharam avtotransportnyh sredstv, obuslovlennym pozharoopasnym rezhimom raboty termokataliticheskih sistem // Problemy upravleniya riskami v tekhnosfere. 2024. № 3 (71). S. 107–122. DOIhttps://doi.org/10.61260/1998-8990-2024-3-107-122.
17. Sovetbekov B., Tokushev I.S., Nurmatov D.B. Upravlenie emissiej zagryaznyayushchih veshchestv avtotransporta // Izvestiya VUZov Kyrgyzstana. 2024. № 6. S. 19–22. DOI:https://doi.org/10.26104/IVK.2024.11.54.005.
18. Bounding the role of black carbon in the climate system: A scientific assessment / T.C. Bond [et al.] // Journal of Geophysical Research: Atmospheres. 2013. Vol. 118. P. 5380–5552. DOI:https://doi.org/10.1002/jgrd.50171.
19. Reuckij A.S., Shurpyak V.K., Tolmachev S.A. Analiz polozhenij rukovodyashchih principov IMO po ocenke intensivnosti vybrosov parnikovyh gazov na protyazhenii zhiznennogo cikla dlya vsekh vidov sudovogo topliva // Nauchno-tekhnicheskij sbornik Rossijskogo morskogo registra sudohodstva. 2025. № 79. S. 14–25.




