Are investigated the objects, mathematical models of which are linear differential equations with the constant coefficients. On these objects the perturbing forces, which have random nature, act. Their correlation functions and spectral power densities are known. Is given the algorithm of the constructionof guaranteeing control, which ensures the reliability of the objects in question.
mathematical model, linear differential equations, perturbing force, random function, correlation function, spectral power density, proportional regulator, stability of motion, optimal control
1. Petrov Yu.P. Sintez optimal'nyh sistem upravleniya pri ne polnost'yu izvestnyh vozmuschayuschih silah. L.: Izd-vo LGU, 1987. 289 s.
2. Petrov Yu.P. Optimizaciya upravlyaemyh sistem, ispytyvayuschih vozdeystvie vetra i morskogo volneniya. L.: Sudostroenie, 1973. 216 s.
3. Petrov Yu.P. Ocherki istorii teorii upravleniya. SPb.: BHV-Peterburg, 2007. 266 s.
4. Doyle J., Fransis B., Tannenbaum A. Control Theory. New York: Macmillan Publ.Co., 1992. 227 p.
5. Frensis B.A. A Course in H¥ Control Theory. Berlin: Springer Verlag, 1987. 156 p.
6. Barabanov A.E., Pervozvanskiy A.A. Optimizaciya po ravnomerno-chastotnym pokazatelyam (H¥ teoriya) // Avtomatika i telemehanika. 1992. № 9. S. 3-32.
7. Sebryakov G.G., Semenov A.V. Metody H¥ teorii upravleniya // Tehnicheskaya kibernetika. 1989. № 2. S. 3-16.
8. Veremey E.I. Lineynye sistemy s obratnoy svyaz'yu. SPb.: Lan', 2013. 442 s.
9. Petrov Yu.P. Novye glavy teorii upravleniya i komp'yuternyh vychisleniy. SPb.: BHV-Peterburg, 2004. 191 s.