Abstract and keywords
Abstract (English):
The article tells about mathematical apparatus that allows to implement an effective approach to optimizing the use of fire-rescue unit on the gas-transport system, which is based on the principle of the optimal distribution of forces and means of EMERCOM of Russia for the elimination of consequences of emergency of a regional scale on the gas-transport system in the conditions of shortage of these forces and capabilities. Moreover there was conducted the decomposition of this problem for a number of mathematical models, realizing the optimal distribution of forces and means of EMERCOM of Russia between the objects of gas-transport system, affected by the emergency of a regional scale.

Keywords:
affected by the emergency of a regional scale, posing mathematical models, affected by the emergency of a regional scale
Text
Text (PDF): Read Download
References

1. Chernyh A.K. Teoreticheskie polozheniya modelirovaniya raspredeleniya sil i sredstv vnutrennih voysk po sluzhebno-boevym zadacham // Mezhdisciplinarnye issledovaniya v sfere integracii obrazovaniya i nauki: sb. nauch. trudov nauch.-ped. sostava S.-Peterb. voen. in-ta vnutr. voysk MVD Rossii. SPb., 2014. S. 151-155.

2. Berzin E.A. Optimal'noe raspredelenie resursov i teoriya igr. M.: Radio i svyaz', 1983.

3. Kuksa A.I., Mihalevich V.S. Metody posledovatel'noy optimizacii v diskretnyh setevyh zadachah raspredeleniya resursov. M.: Nauka, 1983.

4. Gupal A.M., Mihalevich V.S., Norkin V.I. Metody nevypukloy optimizacii. M.: Nauka, 1987.

5. Anisimov V.G., Anisimov E.G. Algoritm optimal'nogo raspredeleniya diskretnyh neodnorodnyh resursov na seti // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. 1997. T. 37. № 1. C. 54-60.

6. Hu T. Celochislennoe programmirovanie i potoki v setyah. M.: Mir, 1974.

7. Ermol'ev Yu.M. Ekstremal'nye zadachi na grafah. Kiev: Naukova dumka, 1968.

8. Nechepurenko M.I., Popkov V.K. Algoritmy i resheniya zadach na grafah i setyah. M.: Nauka, 1990.

9. Fillips D., Garsia-Dias A. Metody analiza setey / pod red. B.G. Sushkova. M.: Mir, 1984.

10. Taha H. Vvedenie v issledovanie operaciy. M.: Izd. dom «Vil'yams», 2001.

11. Vagner G. Osnovy issledovaniya operaciy. M.: Mir, 1972. T. 1.

12. Mihalevich V.S. Metody resheniya zadach nelineynogo i diskretnogo programmirovaniya. Kiev: IK AN USSR, 1984.

13. Vagner G. Osnovy issledovaniya operaciy. M.: Mir, 1972. T. 2.

14. Anisimov V.G., Anisimov E.G. Algoritm vetvey i granic dlya odnogo klassa zadach teorii raspisaniy // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. 1992. T. 32. № 12. S. 2000-2005.

15. Fedorov A.V., Aleshkov A.M., Lebedeva M.I. Povyshenie urovnya pozharovzryvobezopasnosti potencial'no opasnyh proizvodstv putem analiza i upravleniya riskami // Pozhary i chrezvychaynye situacii: predotvraschenie, likvidaciya. 2011. № 1. S. 21-28.

16. Anisimov V.G., Anisimov E.G. Modifikaciya metoda resheniya odnogo klassa zadach celochislennogo programmirovaniya // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. 1997. T. 37. № 2. C. 179-183.

17. Alekseev O.G., Anisimov V.G., Anisimov E.G. Primenenie dvoystvennosti dlya povysheniya effektivnosti metoda vetvey i granic pri reshenii zadachi o rance // Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. 1985. T. 25. № 11. S. 1666-1673.

18. Artamonov V.S., Chernyh A.K., Klykov P.N. Podhod k ocenke effektivnosti sistem upravleniya organizacionnymi sistemami, funkcioniruyuschimi v real'nom masshtabe vremeni // Problemy upravleniya riskami v tehnosfere. 2014. № 4 (32). S. 60-68.

19. Primenenie cepey Markova k ocenke vychislitel'noy slozhnosti simpleksnogo metoda / A.O. Alekseev [i dr.] // Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya. 1988. № 3. S. 59-63.

20. Maslakov M.D., Chernyh A.K. Ob odnom podhode k ocenke effektivnosti matematicheskih modeley // Problemy upravleniya riskami v tehnosfere. 2013. № 3 (27). S. 67-73.

21. Anisimov V.G., Anisimov E.G. Algoritm resursno-vremennoy optimizacii vypolneniya kompleksa vzaimosvyazannyh rabot // Vestnik Rossiyskoy tamozhennoy akademii. 2013. № 1. S. 80-87.

22. Optimizacionnye modeli i metody v upravlenii innovacionnymi processami / V.G. Anisimov [i dr.]. M.: Izd-vo RTA, 2006.

23. Anisimov V.G., Anisimov E.G., Kapitonenko V.V. Ekonomiko-matematicheskie metody i modeli v mirohozyaystvennyh svyazyah: ucheb. M.: Izd-vo Ros. tamozhennoy akad., 2011.

24. Anisimov V.G., Anisimov E.G., Botvin G.A. Investicionnyy analiz v usloviyah neopredelennosti. SPb.: Izd-vo SPbGPU, 2006.

25. Silkina G.Yu., Yur'ev V.N. Ekonomiko-matematicheskoe modelirovanie v prinyatii innovacionnyh resheniy // Izvestiya S.-Peterb. gos. ekon. un-ta. 2014. № 3. S. 43-53.

Login or Create
* Forgot password?