METHOD FOR DETERMINING THE OPTIMAL HEIGHT OF THE GAS ANALYZER FOR SMALL LEAKS OF HYDROGEN-CONTAINING GAS
Abstract and keywords
Abstract (English):
To date, safety measures for storage of hydrogen in liquefied or gaseous state, requirements to storage rooms of this substance, necessary equipment to be installed in such rooms are incompletely studied. At small hydrogen leaks there is an explosion and fire hazard consisting in formation of explosive clouds for a long period of time, in some cases the formation of local clouds of explosive hydrogen-air mixtures automatic gas analyzers cannot fix. The purpose of this work is to determine the optimal height of the gas analyzer in a relatively airtight, unventilated room in which technological equipment for the production of hydrogen-containing gas is located and its small leaks are possible. The model experiment on measuring the concentration of hydrogen-containing mixture at different heights above the leakage place was carried out. A method of determining the optimal height of the gas analyzer above the leakage site was developed. The data on changes in the concentration of hydrogen-containing mixture at different heights above the leakage site were obtained. The optimum height of the gas analyzer location at small leaks of hydrogen-containing gas and technological equipment is revealed.

Keywords:
hydrogen, hydrogen-containing gas, gas analyzer, concentration, optimum height of location, small leaks
Text
Text (PDF): Read Download
References

1. Kirillov I.A. Simonenko V.A., Haritonova N.L. Problemy normativnogo, eksperimental'nogo i raschetno-teoreticheskogo obespecheniya bezopasnosti vodorodnoj energetiki // Rossijskie nanotekhnologii. 2020. T. 15. № 3. S. 402–414. DOI:https://doi.org/10.1134/S1992722320030061. EDN AACMQR.

2. Gamburg D.Yu., Semenov V.P., Dubrovkin N.F. Vodorod. Svojstva, poluchenie, hranenie, transportirovanie, primenenie. M.: Himiya, 1989. 672 s.

3. Ob utverzhdenii Koncepcii razvitiya vodorodnoj energetiki v Rossijskoj Federacii: Rasporyazhenie Pravitel'stva Ros. Federacii ot 5 avg. 2021 g. № 2162-r. Dostup iz sprav.-pravovoj sistemy «Konsul'tantPlyus».

4. Pozharoopasnost' al'ternativnyh topliv / S.V. Zaharov [i dr.] // Innovacionnye tekhnologii v APK, kak faktor razvitiya nauki v sovremennyh usloviyah: sb. statej Mezhdunar. nauch.-issled. konf., posvyashch. 70-letiyu sozdaniya fakul'teta TS v APK (MEKH FAK). Omsk: Omskij gos. agrarnyj un-t im. P.A. Stolypina, 2020. S. 394–398. EDN CJGGEC.

5. Gazoanalizator SIGNAL-4M: rukovodstvo po ekspluatacii. Smolensk. 17 s.

6. Vasyukov G.V., Kozhin P.A. Analiz issledovanij pozharnoj opasnosti vodoroda pri normal'nyh usloviyah // Pozharovzryvobezopasnost'. 2010. T. 19. № 7. S. 4–21. EDN MUJTBX.

7. Timoshenko A.L. Samigullin G.H. Tekuchest' – vzryvopozharoopasnoe svojstvo vodoroda // Servis bezopasnosti v Rossii: opyt, problemy, perspektivy. Arktika – region strategicheskih interesov: pravovaya politika i sovremennye tekhnologii obespecheniya bezopasnosti v Arkticheskom regione: materialy Mezhdunar. nauch.-prakt. konf. SPb.: S.-Peterb. un-t GPS MCHS Rossii, 2022. S. 289–292. EDN RNAEFV.

8. Nikonova E.V. Metod gibkoj ocenki pozharnoj opasnosti akkumulyatornyh pomeshchenij: dis. ... kand. tekhn. nauk. M., 2003. 173 s.

9. Pozharovzryvoopasnost' veshchestv i materialov i sredstva ih tusheniya: sprav. izd.: v 2-h kn. / A.N. Baratov [i dr.]. M., Himiya, 1990. 496 s.

10. Pravila bezopasnosti pri proizvodstve vodoroda metodom elektroliza vody P68 (PB 03-598-03). Ser. 03. Vyp. 37. 3-e izd., ispr. M.: ZAO «Nauchno-tekhnicheskij centr issledovanij problem promyshlennoj bezopasnosti», 2014. 110 s.

11. Koshkin N.N., Shirkevich M.G. Spravochnik po elementarnoj fizike. M.: Nauka,

12. 256 s.

Login or Create
* Forgot password?