Russian Federation
Russian Federation
UDK 614.846.6 Пожарные машины
The issues of maintaining the reliability of the functioning of power units of mobile technical equipment designed to deliver specialized equipment and personnel to firefighting sites are being investigated. In relation to moderately boosted power units (4Ch11/12.5; 4ChN11/12.5) for the chassis of medium-duty fire-fighting vehicles (ZIL-5301; GAZ-3403), statistical patterns of changes in the characteristics of their technical condition depending on the operating time in engine hours were studied experimentally. The patterns make it possible, with a high degree of reliability, to substantiate the relationship between the technical condition of power units and their fuel equipment with indicators of the effectiveness of the use of mobile fire fighting equipment: power, fuel efficiency and environmental safety in the processes of their long-term operational operation for their main purpose – fire extinguishing.
mobile vehicle, power unit, reliability, efficiency, fire extinguishing
1. Abatzoglou J.T., Williams A.P., Barbero R. Global emergence of anthropogenic climate change in fire weather indices // Geophysical Research Letters. 2019. № 46. P. 326–336. DOI:https://doi.org/10.1029/2018GL080959.
2. Technological employment of fire-fighting adapter to increase the efficiency of extinguishing forest fires / M. Hnilicová [et al.] // Central European Forestry Journal. 2022. № 68 (4). P. 471–486. DOI:https://doi.org/10.2478/forj-2022-0009.
3. Gavkalyuk B.V., Lozhkin V.N. Teoreticheskaya koncepciya kontrolya toplivno-ekonomicheskih parametrov upravlyaemogo processa goreniya v silovyh agregatah pozharnyh mashin // Problemy upravleniya riskami v tekhnosfere. 2020. № 1 (53). P. 65–71.
4. Matematicheskaya model' optimizacii pribytiya pozharnogo podrazdeleniya s ispol'zovaniem informacionnyh sistem monitoringa transportnoj logistiki goroda Voronezha / A.V. Kochegarov [i dr.] // Vestnik VGUIT. 2016. № 3. P. 116–122. DOI:https://doi.org/10.20914/2310-1202-2016-3-116-122.
5. Problemy vozrastnogo sostava pozharnyh avtomobilej / A.I. Pichugin [i dr.] // Pozharnaya bezopasnost'. 2019. № 4 (97). P. 87–94.
6. Lozhkin V.N., Lozhkina O.V. Catalytic Converter with Storage Device of Exhaust Gas Heat for City Bus // Transportation Research Procedia. 2017. Vol. 20. P. 412–417. DOI:https://doi.org/10.1016/j.trpro.2017.01.067.1.
7. Etapy i napravleniya sozdaniya i proizvodstva pozharnyh avtomobilej v sovremennoj Rossii / V.I. Loginov [i dr.] // Pozharnaya bezopasnost'. 2022. № 2 (103). P. 51–59. DOI:https://doi.org/10.37657/vniipo.pb.2021.49.96.006.
8. Sacuk I.V. Zakonomernosti raspredeleniya i tekhnicheskogo sostoyaniya ekspluatiruemyh pozharnyh avtomobilej po pokazatelyam konstruktivnoj bezopasnosti silovyh ustanovok // Sibirskij pozharno-spasatel'nyj vestnik. 2022. № 2. P. 31–38. DOI:https://doi.org/10.34987/vestnik.sibpsa.2022.27.97.004.
9. Primenenie integrirovannogo raschetno-eksperimental'nogo kompleksa dlya razrabotki i dovodki rabochih processov dizelya s akkumulyatornoj toplivnoj sistemoj / A.Yu. Dunin [i dr.] // Dvigatelestroenie. 2022. № 1 (287). P. 32–44.
10. Lozhkin V.N. Elektromekhanicheskij manipulyator dlya vyyavleniya avarijno-opasnyh rezhimov ekspluatacii dizel'nyh mashin v usloviyah Arktiki // Ekstremal'naya robototekhnika. 2021. T. 1. № 1. P. 123–130. DOI:https://doi.org/10.31776/ConfER.
11. Zejnetdinov R.A. Energodinamika porshnevyh dvigatelej: monografiya. SPb.: SPbGAU, 2018. 272 p.