Russian Federation
Russian Federation
The paper analyzes and summarizes data on the emission rates of pollutants by motorcycles and mopeds equipped with internal combustion engines. As a result, it was found that 2-stroke and 4-stroke engines not equipped with an exhaust gas neutralizer demonstrate emissions rates of CO varying in the range of 6,6–32,8 g/km, CH – 0,62–19,26 g/km, NOX – 0,010–0,38 g/km; 2-stroke and 4-strokestroke engines equipped with a catalytic converter, demonstrate emission rates of CO ranging from 0,68 to 12,21 g/km; CH – from 0,10 to 4,06 g/km; NOX – from 0,10 to 0,28 g/km. The results obtained will be used to improve the method for forecasting hazards caused by vehicle emissions.
technospheric hazards, two-wheeled motorized vehicles, pollutants, emission rates, monitoring and forecasting
1. Penchenkov A.Yu., Lozhkin V.N. K voprosu modelirovaniya chrezvychajno opasnogo vozdejstviya vzveshennyh chastic ot avtomagistrali s uchetom ih himicheskogo sostava // Problemy upravleniya riskami v tekhnosfere. 2023. № 4 (68). S. 54–62. DOI:https://doi.org/10.61260/1998r-8990-2024-2023-4-54-62.
2. Chernyaev I., Grayevskiy I., Korabelnikov S. The mechanism of continuous monitoring of compliance with environmental requirements imposed on vehicles in operation // Transportation Research Procedia. 2018. Vol. 36. P. 108–113. DOI:https://doi.org/10.1016/j.trpro.2018.12.051.
3. Kosovets M.A., Lozhkin V.N., Lozhkina O.V. Engineering Method for Calculating Changes in the Structure and Intensity of Traffic Flow // IOP Conf. Ser.: Earth Environ. Sci. 2021. Vol. 666. P. 052043. DOI:https://doi.org/10.1088/1755-1315/666/5/052043.
4. Trofimenko Yu.V., Komkov V.I. Ocenka urovnya negativnogo vozdejstviya avtomobil'nogo transporta v gorode CHelyabinske na okruzhayushchuyu sredu i zdorov'e naseleniya na period do 2030 goda // Ekologiya promyshlennogo proizvodstva. 2022. № 2 (118). S. 36–42.
5. Lozhkina O.V., Malyshev S.A., Hahlenov A.V. Issledovanie opasnogo zagryazneniya pridorozhnogo vozduha melkodispersnymi vzveshennymi chasticami RM10 i RM2,5 na primere Sankt-Peterburga // Problemy upravleniya riskami v tekhnosfere. 2021. № 2 (59). S. 96‒103.
6. Revich B.A. Riski zdorov'yu naseleniya v «goryachih tochkah» ot himicheskogo zagryazneniya arkticheskogo makroregiona // Problemy prognozirovaniya. 2020. № 2 (179). S. 148–157.
7. Analiz prichinno-sledstvennoj svyazi mezhdu pervichnoj zabolevaemost'yu detskogo naseleniya Sankt-Peterburga i urovnem zagryazneniya atmosfernogo vozduha vybrosami ot avtotransporta / V.I. Kurchanov [i dr.] // Zdorov'e naseleniya i sreda obitaniya – ZNiSO. 2015. № 2 (263). S. 30–33.
8. Traffic-related air pollution is a risk factor in the development of chronic obstructive pulmonary disease / J. Zheng [et al.] // Front Public Health. 2022. Vol. 10. P. 1036192. DOI:https://doi.org/10.3389/fpubh.2022.1036192.
9. An evaluation of the emission profile for two-wheelers at a traffic junction / A.K. Agarwal [et al.] // Particuology. 2015. Vol. 18. P. 112–119. DOI:https://doi.org/10.1016/j.partic.2014.01.007.
10. Peshin T., Sengupta S., Azevedo I.M.L. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India // Environ. Sci. Technol. 2022. Vol. 5. № 56 (13). P. 9569–9582. DOI:https://doi.org/10.1021/acs.est.1c07718.
11. Costagliola M.A., Murena F., Prati M.V. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation // Sci. Total Environ. 2014. Vol. 468–469. P. 1043–1049. DOI:https://doi.org/10.1016/j.scitotenv.2013.09.025.
12. Morfologicheskij i himicheskij sostav tverdyh chastic otrabotavshih gazov motociklov / E.Yu. Bakuta [i dr.] // Avtomobil'naya promyshlennost'. 2018. № 2. S. 6‒11.
13. Gaevskij V.V., Ivanov A.M., Odinokova I.V. Vliyanie avtotransportnyh sredstv na okruzhayushchuyu sredu i puti resheniya transportnyh problem megapolisa // Arhitekturno-stroitel'nyj i dorozhno-transportnyj kompleksy: problemy, perspektivy, innovacii:sb. Materialov V Mezhdunar. nauch.-prakt. konf. Omsk: FGBOU VO «SibADI», 2021. S. 427‒433.
14. Measurements of Emissions from Motorcycles and Modeling Its Impact on Air Quality / L.F.A. Garcia [et al.] // Journal of the Brazilian Chemical Society. 2013. Vol. 24. № 3. DOI:https://doi.org/10.5935/0103-5053.20130048.
15. Loboda V. V Rossii – 45 mln legkovyh avtomobilej. URL: https://www.autostat.ru/news/47472/ (data obrashcheniya: 10.02.2024).
16. Altuhov A.V., Har'kov V.P. Obzor rynka motocikletnoj tekhniki (dlya celej sozdaniya platformy elektrotransporta) // Ekonomika i upravlenie. 2021. № 12. S. 983‒991. DOI:https://doi.org/10.35854/1998-1627-2021-12-983-991.
17. Littman F.E., Isam K.M. Regional air pollution study. Off-highway mobile source emission inventory // EPA-600/4-77-041. 1977. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/2000XECD.PDF?Dockey=2000XECD.PDF (data obrashcheniya: 10.02.2024).
18. Carlson T.R., Austin T.C., McClement D. Development of Emission Rates for the MOVES Model // EPA-420-R-12-022. 2010. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100F1A5.PDF?Dockey=P100F1A5.PDF (data obrashcheniya: 10.02.2024).
19. Ullman T.L., Hare C.T. Motorcycle Emission Control Demonstration // EPA-460/3-77-020. 1977. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/9101M6VG.PDF?Dockey=9101M6VG.PDF (data obrashcheniya: 10.02.2024).
20. Exhaust Emissions and Fuel Economy of Three Prototype Honda Motorcycles // EPA-AA-TAEB 76-19. 1976. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/9100X4S2.PDF?Dockey=9100X4S2.PDF (data obrashcheniya: 10.02.2024).
21. Ntziachristos L., Samaras Z. Passenger cars, light commercial trucks, heavy-duty vehicles including buses and motor cycles // EMEP/EEA air pollutant emission inventory guidebook 2023. URL: https://www.eea.europa.eu/publications/emep-eea-guidebook-2023/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i (data obrashcheniya: 10.02.2024).
22. Analysis of Research Method, Results and Regulations Regarding the Exhaust Emissions from Two-Wheeled Vehicles under Actual Operating Conditions / N. Szymlet [et al.] // Journal of Ecological Engineering. 2020. Vol. 21 (1). P. 128–139. DOI: https://doi.org/10.12911/22998993/113077.
23. Yankevich N.S., Shappo V.M., Poberajlo A.I. Nejtralizaciya otrabotavshih gazov motocikletnyh dvigatelej vnutrennego sgoraniya // Mashinostroenie i tekhnosfera XXI veka: sb. tr. XVI Mezhdunar. nauch.-tekhn. konf. 2009. T. 3. S. 289‒294.
24. Lozhkina O.V., Mal'chikov K.B. Metod prognozirovaniya tekhnogennyh opasnostej na osnove opredeleniya soderzhaniya pollyutantov v otrabotavshih gazah lodochnyh motorov // Problemy upravleniya riskami v tekhnosfere. 2023. № 1 (65). S. 127‒137.
25. Tihonov A.R., Shipovalov D.A. Kataliticheskie nejtralizatory otrabotavshih gazov. Dostoinstva i nedostatki // Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2014. № 6-1 (25). S. 75‒76.
26. Gusakov S.V., Sharipov A.Z., Men'shih A.A. Izuchenie ekologicheskih pokazatelej avtomobil'nogo dvigatelya s iskrovym zazhiganiem v period progreva posle holodnogo puska // Vestnik Rossijskogo universiteta druzhby narodov. 2011. № 3. S. 60‒67.
27. Shabanov A.V., Shabanov A.A. Analiz effektivnosti sistem nejtralizacii vrednyh veshchestv otrabotavshih gazov avtomobilej // Vestnik MGUPI. 2013. № 45. S. 92‒101.