employee
Russian Federation
Some methods of analyzing non-stationary time series are presented using the example of the indicator «number of fires» according to statistical data in the primorsky territory for five years, recommendations are given for building predictive models.
statistics, time series, linear regression, trend, seasonality coefficient, fourier series
1. Pozhary i pozharnaya bezopasnost' v 2022 godu: inform.-analit. sb. Balashiha: FGBU VNIIPO MCHS Rossii, 2023. 80 s.
2. Sazhin Yu.V., Katyn' A.V., Sarajkin Yu.V. Analiz vremennyh ryadov i prognozirovanie: ucheb. Saransk: Izd-vo Mordov. un-ta, 2013. 192 s.
3. Ohorzin V.A. Komp'yuternoe modelirovanie v sisteme Mathcad. M.: Finansy i statistika, 2006. 144 s.
4. Voskobojnikov Yu.E. Statisticheskij analiz eksperimental'nyh dannyh v paketah MathCAD i Excel: ucheb. posobie dlya vuzov. SPb.: Lan', 2021. 212 s.
5. Vityazev V.V. Spektral'no-korrelyacionnyj analiz ravnomernyh vremennyh ryadov. SPb.: Izd-vo SPbGU, 2001.
6. Kryukova M.S., Tarasova O.Yu., Fominyh A.A. Issledovanie dinamiki pogibshih pri pozharah s pomoshch'yu ryadov Fur'e // Prirodnye i tekhnogennye riski (fiziko-matematicheskie i prikladnye aspekty). 2015. № 4 (16). S. 41–46.
7. Kryukova M.S., Kirpichnikova A.A. Avtomatizaciya processa prognozirovaniya chisla pogibshih pri pozharah s pomoshch'yu ryadov Fur'e // Prirodnye i tekhnogennye riski (fiziko-matematicheskie i prikladnye aspekty). 2017. № 4 (24). S. 9–12.