Russian Federation
Russian Federation
UDC 614.841
The article evaluates the fire and explosion safety of hydrogen as a fuel, which is relevant in connection with the development of hydrogen transport. The main causes of the fire and explosion hazard of hydrogen are identified, and recommendations for its reduction are presented. The distinctive features of hydrogen fires have been established. Methods and models for calculating gas dynamics and heat and mass transfer during hydrogen combustion are presented, and their analysis is carried out. The main model of computational fluid dynamics is considered, which is based on the equations of continuity, state, conservation of momentum and energy for cases of hydrogen fires and explosions. Studies of jet burning of hydrogen are discussed. It is established that a good correspondence of the calculation results with experimental data on the main characteristics of the fire jet provides a vortex-resolving approach to turbulence modeling. The further development of hydrogen combustion models is related to the calculation of the surface potential energy of particles.
hydrogen, fire and explosion safety, transport, computational fluid dynamics, model, burning, explosion, fire-jet
1. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment / R. Hren [et al.] // Renewable and Sustainable Energy Reviews. 2023. Vol. 173. P. 113–113.
2. Kim B., Hwang K.I. Effect of angular motion on accidental hydrogen fires in conceptional ship fuel preparation room with mechanical ventilation // International Journal of Hydrogen Energy. 2024. Vol. 50. P. 1075–1090.
3. Safety evaluation on hydrogen leakage and combustion of high-pressure hydrogen dispenser / B. Wang [et al.] // International Journal of Hydrogen Energy. 2024. Vol. 72. P. 1010–1022.
4. Laguna-Bercero M.A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review // Journal of Power sources. 2012. Vol. 203. P. 4–16.
5. Sürer M.G., Arat H.T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles // International Journal of Hydrogen Energy. 2022. Vol. 47. № 45. P. 19865–19875.
6. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship / F. Li [et al] // Renewable and Sustainable Energy Reviews. 2018. Vol. 97. P. 177–185.
7. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process / F. Yang [et al.] // International journal of hydrogen energy. 2021. Vol. 46. № 61. P. 31467–31488.
8. Armaroli N., Balzani V. The hydrogen issue // ChemSusChem. 2011. Vol. 4. № 1. P. 21–36.
9. Mazloomi K., Gomes C. Hydrogen as an energy carrier: Prospects and challenges // Renewable and sustainable energy reviews. 2012. Vol. 16. № 5. P. 3024–3033.
10. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship / X. Mao [et al.] // International journal of hydrogen energy. 2021. Vol. 46. № 9. P. 6857–6872.
11. Safety guidelines and a training framework for LNG storage and bunkering at ports /O. Aneziris [et al.] // Safety Science. 2021. Vol. 138. P. 105–212.
12. Astbury G.R., Hawksworth S.J. Spontaneous ignition of hydrogen leaks: a review of postulated mechanisms // International Journal of Hydrogen Energy. 2007. Vol. 32. № 13. P. 2178–2185.
13. LaChance J., Tchouvelev A., Engebo A. Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure // International journal of hydrogen energy. 2011. Vol. 36. № 3. P. 2381–2388.
14. Gómez-Mares M., Zárate L., Casal J. Jet fires and the domino effect // Fire safety journal. 2008. Vol. 43. № 8. P. 583–588.
15. Ocenka effektivnosti sposobov obespecheniya pozharovzryvobezopasnosti transporta na vodorodnom toplive / I.P. Eltyshev [i dr.] // Pozhary i chrezvychajnye situacii: predotvrashchenie, likvidaciya. 2022. № 2. S. 19–26.
16. Analyzing the gas temperature of a hydrogen jet fire in a compartment with the Fire Dynamics Simulator / W. Liu [et al.] // International Journal of Hydrogen Energy. 2024. Vol. 53. P. 1097–1106.
17. Characterization of high-pressure, underexpanded hydrogen-jet flames /R.W. Schefer [et al.] // International journal of hydrogen energy. 2007. Vol. 32. № 12. P. 2081–2093.
18. Coupling CFD and VR for advanced firefighting training in a virtual ship engine room / D. Glujic [et al.] // Results in engineering. 2024. Vol. 24. P. 103025.
19. Jang C.B., Choi S.W., Baek J.B. CFD modeling and fire damage analysis of jet fire on hydrogen pipeline in a pipe rack structure // International journal of hydrogen energy. 2015. Vol. 40. № 45. P. 15760–15772.
20. Thermal and fire characteristics of hydrogen jet flames in the tunnel at longitudinal ventilation strategies / Yu. Xie [et al.] // Fuel. 2021. Vol. 306. P. 121659.
21. Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field / X. Gu [et al.] // Safety science. 2020. Vol. 122. P. 104532.
22. Hydrogen jet fires in a passively ventilated enclosure / P. Hooker [et al.] // International Journal of Hydrogen Energy. 2017. Vol. 42. № 11. P. 7577–7588.
23. Numerical simulation and consequence analysis of accidental hydrogen fires in a conceptual offshore hydrogen production / H. Lin [et al.] // International Journal of Hydrogen Energy. 2023. Vol. 48. № 27. P. 10250–10263.
24. Yuan Yu., Wu S., Shen B. A numerical simulation of the suppression of hydrogen jet fires on hydrogen fuel cell ships using a fine water mist // International Journal of Hydrogen Energy. 2021. Vol. 46. № 24. P. 13353–13364.
25. Modelirovanie vodorodnoj pozhar-strui s pomoshch'yu metodiki KABARE /V.Yu. Glotov [i dr.] // Izvestiya Rossijskoj akademii nauk. Energetika. 2022. № 4. S. 25–42.
26. Gordienko D.M., Shebeko Yu.N. Pozharnaya bezopasnost' ob"ektov infrastruktury transporta na vodorodnom toplive // Pozharovzryvobezopasnost'. 2022. T. 31. № 2. S. 41–51.
27. Gorev V.A., Medvedev G.M. Kineticheskie i gazodinamicheskie prichiny avarijnyh vzryvov vodoroda // Pozharovzryvobezopasnost'. 2013. T. 22. № 11. S. 24–30.