Russian Federation
Russian Federation
Russian Federation
The increasing requirements for the organization of information and analytical support for the activities of the management bodies of EMERCOMof Russia have determined the need to improve the information processing processes being implemented. The concept proposed by the authors of improving the processes of information and analytical support for the work of the management bodies of EMERCOM of Russia is based on the implementation of modern trends in situational management of intellectual data processing, modeling scenarios for conducting information work and operational adjustment of the applied analytical tools to the specifics of the information tasks being solved. The publication reveals the content of the approach towards the integrated implementation of machine learning technologies in the interests of monitoring the states of partially observed control objects.
identification of threats and object states, machine learning, neural networks, fuzzy logic, probabilistic analysis, complex processing, modeling
1. Pospelov D.A. Situacionnoe upravlenie: teoriya i praktika. M.: Nauka. Gl. red. fiz.-mat. lit., 1986. 288 s.
2. Klykov Yu.I. Situacionnoe upravlenie bol'shimi sistemami. M.: Energiya, 1974. 134 s.
3. Drozdov A.P., Peskov R.I. Problemy informacionnogo obespecheniya v edinoj gosudarstvennoj sisteme preduprezhdeniya i likvidacii chrezvychajnyh situacij // Human Progress. 2017. T. 3. № 3. S. 7. EDN YMDCRB.
4. Peskov R.I. Osnovnye ispol'zuemye v MCHS Rossii informacionnye sistemy // Tekhnologii tekhnosfernoj bezopasnosti. 2017. № 2 (72). S. 265–274. EDN ZDRKXV.
5. Kolesnikov A.V., Kirikov I.A., Listopad S.V. Gibridnye intellektual'nye sistemy s samoorganizaciej: koordinaciya, soglasovannost', spor. M.: IPI RAN, 2014. 189 s.
6. Demidova L.A., Kirakovsij V.V., Pyl'kin A.N. Prinyatie reshenij v usloviyah neopredelennosti. 2-e izd., pererab. M.: Goryachaya liniya – Telekom, 2016. 289 s.
7. Maksimov A.V. Metody podderzhki prinyatiya reshenij v operativnom upravlenii pri chrezvychajnyh situaciyah: obzor issledovanij // Nacional'naya bezopasnost' i strategicheskoe planirovanie. 2023. № 2 (42). S. 91–102. DOI:https://doi.org/10.37468/2307-1400-2023-2-91-102. EDN CJCPWN.
8. Matveev A.V., Kolerov D.A. Perspektivy primeneniya iskusstvennogo intellekta pri reagirovanii na CHS // Servis bezopasnosti v Rossii: opyt, problemy, perspektivy. Monitoring, predotvrashchenie i likvidaciya chrezvychajnyh situacij prirodnogo i tekhnogennogo haraktera: materialy Mezhdunar. nauch.-prakt. konf. SPb.: S.-Peterb. un-t GPS MCHS Rossii, 2021. S. 726–730. EDN IXSYYX.
9. Kugaevskih A.V., Muromcev D.I., Kirsanova O.V. Klassicheskie metody mashinnogo obucheniya. SPb.: Un-t ITMO, 2022. 53 s.
10. Pankov A.V., Kribel' A.M., Vasil'ev N.A. Metod sovershenstvovaniya informacionno-analiticheskoj raboty na osnove kompleksirovaniya rezul'tatov raspoznavaniya sostoyanij ob"ektov kontrolya s ispol'zovaniem metodov mashinnogo obucheniya // Naukoemkie tekhnologii v kosmicheskih issledovaniyah Zemli. 2022. T. 14. № 2. S. 27–35. DOI:https://doi.org/10.36724/2409-5419-2022-14-2-27-35. EDN AFFQVG.
11. Pankov A.V., Devyatkin A.M. Kompleksirovanie metodov informacionno-analiticheskoj raboty dlya povysheniya kachestva informacionnyh reshenij // Trudy Voenno-kosmicheskoj akademii im. A.F. Mozhajskogo. 2021. № 678. S. 78–87. EDN SKIYTV.