Russian Federation
2.10.2
3.2.6
614.72
The article describes a comprehensive methodology for monitoring and forecasting the hazardous effects of emissions from motor vehicles and recreational vessels in zones of their joint influence. The methodology is based on updated information on the structure of the traffic flow and the intensity of traffic of vehicles and vessels in the historical center of St. Petersburg and on the use of pollutant emission factors for accounting categories of cars, single-deck passenger ships and small vessels obtained experimentally. The results of the approbation of the developed methodology showed that near the surveyed sections of highways, the calculated concentrations of nitrogen dioxide can reach values from 1,89 to 7,22 of the maximum permissible concentration, and carbon monoxide from 1,40 to 3,49 of the maximum permissible concentration, which may pose a risk to the health of the population of Saint-Petersburg.
emergency air pollution, monitoring, forecasting, vehicles, water transport
1. Estimating 2013–2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model / C. Huang [et al.] // Environ. Pollut. 2022. Vol. 292 (Pt A). P. 118285. DOI:https://doi.org/10.1016/j.envpol.2021.118285.
2. A novel in-situ method to determine the respiratory tract deposition of carbonaceous particles reveals dangers of public commuting in highly polluted megacity / L. Madueño [et al.] // Part. Fibre Toxicol. 2022. Vol. 9 (1). P. 61. DOI:https://doi.org/10.1186/s12989-022-00501-x.
3. Spatial variability of on-bicycle black carbon concentrations in the megacity of Sao Paulo: A pilot study / A.C. Targino [et al.] // Environ. Pollut. 2018. Vol. 242 (Pt A). P. 539–543. DOI:https://doi.org/10.1016/j.envpol.2018.07.003.
4. Revich B.A. Rol' faktorov riska gorodskogo prostranstva v pandemii Covid-19 (analiticheskij obzor). Analiz riska zdorov'yu. 2024. № 2. S. 170–184. DOI:https://doi.org/10.21668/health.risk/2024.2.16.
5. Lozhkina O.V., Komashinskij V.I. K voprosu o sovershenstvovanii informacionnogo processa monitoringa i prognozirovaniya opasnogo vozdejstviya transportnyh vybrosov na sredu obitaniya i naselenie // Nauch.-analit. zhurn. «Vestnik S.-Peterb. un-a GPS MCHS Rossii». 2021. № 2. S. 16–24.
6. Lozhkina O.V. Mal'chikov K.B. Bortovoj monitoring vybrosov opasnyh (zagryaznyayushchih) veshchestv legkovym i legkim kommercheskim avtotransportom // Problemy upravleniya riskami v tekhnosfere. 2024. № 2 (70). S. 193–206. DOI:https://doi.org/10.61260/1998-8990-2024-2-193-206.
7. Lozhkina O.V., Mal'chikov K.B. Opredelenie soderzhaniya pollyutantov v otrabotavshih gazah chetyrekhtaktnyh podvesnyh lodochnyh motorov v kontekste razrabotki metodov prognozirovaniya tekhnogennyh opasnostej // Bezopasnost' zhiznedeyatel'nosti. 2023. № 12 (276). S. 35–41.
8. Lozhkina O.V., Mal'chikov K.B. Opredelenie soderzhaniya pollyutantov v otrabotavshih gazah sudovogo dvigatelya YAMZ-238 GM2 // Problemy upravleniya riskami v tekhnosfere. 2023. № 3 (67). S. 158–168. DOI:https://doi.org/10.61260/1998-8990-2023-3-158-168.
9. Lozhkina O.V., Mal'chikov K.B. Sravnitel'nyj analiz probegovyh vybrosov avtomobilej na razlichnyh vidah topliva pri dorozhnyh zatorah // Vestnik grazhdanskih inzhenerov. 2024. № 2 (103). S. 133–143. DOI:https://doi.org/10.23968/1999-5571-2024-21-2-133-143.
10. Lozhkina O.V., Komashinskij V.I. Informacionnyj process monitoring i prognozirovaniya effektivnosti ot vnedreniya ekologicheski orientirovannyh tekhnologij na avtomobil'nom transporte // Nauch.-analit. zhurn. «Vestnik S.-Peterb. un-a GPS MCHS Rossii». 2021. № 4. S. 18–26.
11. Lozhkina O.V., Meshalkina M.N. Sovershenstvovanie metodov kontrolya vozdejstviya avtotransporta na kachestvo sredy obitaniya // Tekhniko-tekhnologicheskie problemy servisa. 2022. № 1 (59). S. 13–18.
12. Lozhkina O.V., Mal'chikov K.B. Sravnitel'nyj analiz soderzhaniya pollyutantov v otrabotavshih gazah silovyh ustanovok malomernyh sudov i avtotransportnyh sredstv // Dvigatelestroenie. 2024. № 1 (295). S. 21–33.
13. Peterburgskij «geneticheskij kod». Vek XVIII i vek XXI / R.A. Mangushev [i dr.] // Vestnik grazhdanskih inzhenerov. 2019. № 5 (76). S. 33–40. DOI:https://doi.org/10.23968/1999-5571-2019-16-5-33-40.
14. Lavrov L.P., Molotkova E.G., Petrov F.V. Morfotipy kvartalov istoricheskogo centra Sankt-Peterburga // ACADEMIA. Arhitektura i stroitel'stvo. 2019. № 4. S. 52–59. DOI:https://doi.org/10.22337/2077-9038-2019-4-52-59.
15. Fedotova G.O. Gradostroitel'naya sistema i ob"emno-planirovochnoe reshenie zony byvshej Troickoj ulicy v Sankt-Peterburge // Arhitekton: izvestiya vuzov. 2019. № 4 (68). S. 1–10.
16. Kuznecov S. Fasad Ego Velichestvu. Stroganovskij dvorec, dom kompanii «Zinger» i dvorec Belosel'skih-Belozerskih: Nevskij prospekt kak arhitekturnyj ansambl' // Iskusstvoznanie. 2020. № 3. S. 304–363.
17. Ivanov M.V., Anderson P. Narushenie zakonodatel'stva pri sohranenii arhitekturnogo naslediya Sankt-Peterburga // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. 2017. T. 17. № 2. S. 5–12. DOI:https://doi.org/10.14529/build170201.
18. Sakovich A.D., Tret'yakov V.Yu. Dinamika zagryazneniya atmosfernogo vozduha SO i NOX v razlichnyh rajonah Sankt-Peterburga za period 2012–2016 gg. // Meteorologicheskij vestnik. 2018. T. 10. № 1. S. 38–51.